faster rcnn实现有丝分裂细胞目标检测,输出python代码
时间: 2023-09-14 14:10:02 浏览: 83
以下是使用Faster RCNN实现有丝分裂细胞目标检测的Python代码:
```
import numpy as np
import tensorflow as tf
import cv2
#load the model
model = tf.keras.models.load_model('faster_rcnn_model.h5')
#load the image
image = cv2.imread('cells.jpg')
#resize the image
image = cv2.resize(image, (800, 800))
#preprocess the image
image = tf.keras.applications.resnet.preprocess_input(image)
#get the predictions
predictions = model.predict(np.array([image]))
#get the boxes, scores and classes
boxes = predictions[0]['detection_boxes']
scores = predictions[0]['detection_scores']
classes = predictions[0]['detection_classes']
#filter the boxes to only get the cells
cell_boxes = []
for i in range(len(scores)):
if scores[i] > 0.5 and classes[i] == 1:
cell_boxes.append(boxes[i])
#draw the boxes on the image
for box in cell_boxes:
x1 = int(box[1] * 800)
y1 = int(box[0] * 800)
x2 = int(box[3] * 800)
y2 = int(box[2] * 800)
cv2.rectangle(image, (x1, y1), (x2, y2), (0, 255, 0), 2)
#display the image
cv2.imshow('image', image)
cv2.waitKey(0)
```
请注意,这仅仅是快速实现一个有丝分裂细胞目标检测的示例代码,具体实现方式可能因应用场景的不同而有所不同。
阅读全文