帮我以python写一个用opencv的停车车牌识别的程序
时间: 2024-05-11 15:15:11 浏览: 109
利用Python opencv进行车牌识别
5星 · 资源好评率100%
好的,这个问题我可以回答。以下是一个简单的用Python和OpenCV实现的停车车牌识别程序:
```python
import cv2
# 载入模型
net = cv2.dnn.readNet('yolo-voc.weights', 'yolo-voc.cfg')
# 读取图像并进行预处理
img = cv2.imread('car.jpg')
blob = cv2.dnn.blobFromImage(img, scalefactor=1/255, size=(416, 416), mean=(0,0,0), swapRB=True, crop=False)
# 将输入数据传入模型进行预测
net.setInput(blob)
out_layer_names = net.getUnconnectedOutLayersNames()
outs = net.forward(out_layer_names)
# 解析预测结果并作出判断
class_ids = []
confidences = []
boxes = []
for out in outs:
for detection in out:
scores = detection[5:]
class_id = np.argmax(scores)
confidence = scores[class_id]
if confidence > 0.5 and class_id == 2:
center_x = int(detection[0] * img.shape[1])
center_y = int(detection[1] * img.shape[0])
w = int(detection[2] * img.shape[1])
h = int(detection[3] * img.shape[0])
x1 = int(center_x - w/2)
y1 = int(center_y - h/2)
class_ids.append(class_id)
confidences.append(float(confidence))
boxes.append([x1, y1, w, h])
# 显示结果图像
indices = cv2.dnn.NMSBoxes(boxes, confidences, 0.5, 0.4)
for i in indices:
i = i[0]
box = boxes[i]
x,y,w,h = box
cv2.rectangle(img, (x,y), (x+w,y+h), (255,0,0), 2)
cv2.imshow("car plate detection", img)
cv2.waitKey(0)
cv2.destroyAllWindows()
```
这段代码可实现从图像中识别出停车车牌的位置,并在图像上用矩形框标注出来。识别算法采用了YOLO v2算法,训练数据采用的是VOC格式的数据集。你需要下载正确的权重文件及配置文件,才能运行此代码。
阅读全文