Python Opencv 车牌图片识别
时间: 2023-11-05 12:04:22 浏览: 115
车牌图片识别是计算机视觉领域的一个重要应用,可以帮助交警部门、停车场管理部门等机构快速准确地识别车牌号码,提高工作效率。Python Opencv 是一种强大的计算机视觉库,能够实现车牌图片识别的关键技术。
下面是一些实现车牌图片识别的关键技术:
1. 图像预处理:对车牌图片进行灰度化、二值化、去噪、边缘检测等处理,以便更好地提取车牌信息。
2. 车牌定位:通过图像处理技术找到车牌的位置,可以采用基于颜色、形状、纹理等特征的方法。
3. 字符分割:将车牌中的字符分割出来,可以采用基于像素间距、字符宽高比、字符间距等特征的方法。
4. 字符识别:对分割出来的字符进行识别,可以采用基于模板匹配、特征提取、深度学习等方法。
以下是一个简单的 Python Opencv 车牌图片识别的代码示例:
```python
import cv2
# 读取图片并进行灰度化
img = cv2.imread('car_plate.jpg')
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
# 进行边缘检测
edges = cv2.Canny(gray, 100, 200)
# 进行车牌定位
contours, hierarchy = cv2.findContours(edges, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
for contour in contours:
x, y, w, h = cv2.boundingRect(contour)
if w > 100 and h > 30 and w < 400 and h < 150:
cv2.rectangle(img, (x, y), (x+w, y+h), (0, 0, 255), 2)
# 显示结果
cv2.imshow('result', img)
cv2.waitKey(0)
cv2.destroyAllWindows()
```
该代码通过读取一张车牌图片,进行灰度化和边缘检测,并通过车牌定位方法找到车牌的位置,并用矩形框出车牌。在实际应用中,可以根据需要进一步进行字符分割和字符识别等处理,实现车牌图片识别的完整流程。
阅读全文