python 写一个ann算法,利用csv中ws列,wd列,irradiance列,Tambient列,Tmodule列,预测power列
时间: 2024-09-19 10:05:26 浏览: 38
在Python中,我们可以使用sklearn库中的线性回归模型LinearRegression作为基础,来实现简单的多元线性回归(ANN通常指人工神经网络,这里假设你想用线性回归模拟简单的情况)。首先,你需要导入必要的库并读取CSV文件。以下是步骤:
1. 导入所需库:
```python
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression
from sklearn.metrics import mean_squared_error
```
2. 读取CSV数据:
```python
data = pd.read_csv('your_data.csv') # 替换为实际文件路径
X = data[['ws', 'wd', 'irradiance', 'Tambient', 'Tmodule']] # 输入特征变量
y = data['power'] # 需要预测的目标变量
```
3. 数据预处理(如划分训练集和测试集):
```python
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
```
4. 创建并训练线性回归模型:
```python
model = LinearRegression()
model.fit(X_train, y_train)
```
5. 进行预测:
```python
y_pred = model.predict(X_test)
```
6. 评估模型性能:
```python
mse = mean_squared_error(y_test, y_pred)
print("Mean Squared Error:", mse)
```
阅读全文