怎么直接调用pytorch中的convlstm
时间: 2023-04-09 14:01:06 浏览: 190
你可以使用以下代码来直接调用PyTorch中的ConvLSTM:
```
import torch.nn as nn
from torch.autograd import Variable
class ConvLSTMCell(nn.Module):
def __init__(self, input_size, hidden_size, kernel_size):
super(ConvLSTMCell, self).__init__()
self.input_size = input_size
self.hidden_size = hidden_size
self.kernel_size = kernel_size
self.padding = kernel_size // 2
self.Wxi = nn.Conv2d(in_channels=input_size, out_channels=hidden_size, kernel_size=kernel_size, padding=self.padding)
self.Whi = nn.Conv2d(in_channels=hidden_size, out_channels=hidden_size, kernel_size=kernel_size, padding=self.padding)
self.Wxf = nn.Conv2d(in_channels=input_size, out_channels=hidden_size, kernel_size=kernel_size, padding=self.padding)
self.Whf = nn.Conv2d(in_channels=hidden_size, out_channels=hidden_size, kernel_size=kernel_size, padding=self.padding)
self.Wxc = nn.Conv2d(in_channels=input_size, out_channels=hidden_size, kernel_size=kernel_size, padding=self.padding)
self.Whc = nn.Conv2d(in_channels=hidden_size, out_channels=hidden_size, kernel_size=kernel_size, padding=self.padding)
self.Wxo = nn.Conv2d(in_channels=input_size, out_channels=hidden_size, kernel_size=kernel_size, padding=self.padding)
self.Who = nn.Conv2d(in_channels=hidden_size, out_channels=hidden_size, kernel_size=kernel_size, padding=self.padding)
self.Wci = None
self.Wcf = None
self.Wco = None
def forward(self, x, h, c):
ci = torch.sigmoid(self.Wxi(x) + self.Whi(h) + c * self.Wci)
cf = torch.sigmoid(self.Wxf(x) + self.Whf(h) + c * self.Wcf)
cc = cf * c + ci * torch.tanh(self.Wxc(x) + self.Whc(h))
co = torch.sigmoid(self.Wxo(x) + self.Who(h) + cc * self.Wco)
ch = co * torch.tanh(cc)
return ch, cc
class ConvLSTM(nn.Module):
def __init__(self, input_size, hidden_size, kernel_size, num_layers, batch_first=False):
super(ConvLSTM, self).__init__()
self.input_size = input_size
self.hidden_size = hidden_size
self.kernel_size = kernel_size
self.num_layers = num_layers
self.batch_first = batch_first
cell_list = []
for i in range(0, self.num_layers):
cur_input_size = self.input_size if i == 0 else self.hidden_size
cell_list.append(ConvLSTMCell(input_size=cur_input_size, hidden_size=self.hidden_size, kernel_size=self.kernel_size))
self.cell_list = nn.ModuleList(cell_list)
def forward(self, input_tensor, hidden_state=None):
if hidden_state is None:
hidden_state = self._init_hidden(batch_size=input_tensor.size(0))
layer_output_list = []
last_state_list = []
seq_len = input_tensor.size(1) if self.batch_first else input_tensor.size(0)
cur_layer_input = input_tensor
for layer_idx in range(self.num_layers):
h, c = hidden_state[layer_idx]
output_inner = []
for t in range(seq_len):
h, c = self.cell_list[layer_idx](input_tensor=cur_layer_input[:, t, :, :, :], h=h, c=c)
output_inner.append(h)
layer_output = torch.stack(output_inner, dim=1)
cur_layer_input = layer_output
layer_output_list.append(layer_output)
last_state_list.append((h, c))
if self.batch_first:
return layer_output_list, last_state_list
else:
return layer_output_list.transpose(0, 1), last_state_list
def _init_hidden(self, batch_size):
init_states = []
for i in range(self.num_layers):
init_states.append((Variable(torch.zeros(batch_size, self.hidden_size, 64, 64)).cuda(),
Variable(torch.zeros(batch_size, self.hidden_size, 64, 64)).cuda()))
return init_states
```
这是一个ConvLSTM的实现,可以直接调用。
阅读全文