hist = self._model.fit(board_list, [pi_list, z_list], epochs=self._fit_epochs, batch_size=self._mini_batch_size, verbose=1) hist_path = self._fit_history_file + '_' + str(self._fit_epochs) + '_' + str(self._mini_batch_size) + '.txt' with open(hist_path, 'a') as f: f.write(str(hist.history)) return hist.history['loss'][0] # only sample loss of first epoch
时间: 2023-06-18 15:04:39 浏览: 143
这段代码是一个训练模型的过程。首先,使用模型的 `fit()` 方法对输入的棋盘列表 `board_list` 进行训练,期望输出为策略列表 `pi_list` 和胜率列表 `z_list`。其中,`epochs` 参数指定了训练的迭代次数,`batch_size` 参数指定了每次迭代的批量大小。训练过程中,`verbose` 参数为 1 表示打印训练过程的详细信息。
训练完成后,将训练过程的 `history` 对象写入到指定路径的文件中,并返回第一次迭代的损失值 `loss`。在这里,只返回第一次迭代的损失值是因为我们只需要了解训练过程中的初始损失情况即可。
相关问题
生成torch代码:class ConcreteAutoencoderFeatureSelector(): def __init__(self, K, output_function, num_epochs=300, batch_size=None, learning_rate=0.001, start_temp=10.0, min_temp=0.1, tryout_limit=1): self.K = K self.output_function = output_function self.num_epochs = num_epochs self.batch_size = batch_size self.learning_rate = learning_rate self.start_temp = start_temp self.min_temp = min_temp self.tryout_limit = tryout_limit def fit(self, X, Y=None, val_X=None, val_Y=None): if Y is None: Y = X assert len(X) == len(Y) validation_data = None if val_X is not None and val_Y is not None: assert len(val_X) == len(val_Y) validation_data = (val_X, val_Y) if self.batch_size is None: self.batch_size = max(len(X) // 256, 16) num_epochs = self.num_epochs steps_per_epoch = (len(X) + self.batch_size - 1) // self.batch_size for i in range(self.tryout_limit): K.set_learning_phase(1) inputs = Input(shape=X.shape[1:]) alpha = math.exp(math.log(self.min_temp / self.start_temp) / (num_epochs * steps_per_epoch)) self.concrete_select = ConcreteSelect(self.K, self.start_temp, self.min_temp, alpha, name='concrete_select') selected_features = self.concrete_select(inputs) outputs = self.output_function(selected_features) self.model = Model(inputs, outputs) self.model.compile(Adam(self.learning_rate), loss='mean_squared_error') print(self.model.summary()) stopper_callback = StopperCallback() hist = self.model.fit(X, Y, self.batch_size, num_epochs, verbose=1, callbacks=[stopper_callback], validation_data=validation_data) # , validation_freq = 10) if K.get_value(K.mean( K.max(K.softmax(self.concrete_select.logits, axis=-1)))) >= stopper_callback.mean_max_target: break num_epochs *= 2 self.probabilities = K.get_value(K.softmax(self.model.get_layer('concrete_select').logits)) self.indices = K.get_value(K.argmax(self.model.get_layer('concrete_select').logits)) return self def get_indices(self): return K.get_value(K.argmax(self.model.get_layer('concrete_select').logits)) def get_mask(self): return K.get_value(K.sum(K.one_hot(K.argmax(self.model.get_layer('concrete_select').logits), self.model.get_layer('concrete_select').logits.shape[1]), axis=0)) def transform(self, X): return X[self.get_indices()] def fit_transform(self, X, y): self.fit(X, y) return self.transform(X) def get_support(self, indices=False): return self.get_indices() if indices else self.get_mask() def get_params(self): return self.model
这段代码定义了一个名为"ConcreteAutoencoderFeatureSelector"的类,它有几个参数,包括:K(特征数目),output_function(输出函数),num_epochs(迭代次数),batch_size(批大小),learning_rate(学习率),start_temp(开始温度),min_temp(最小温度),tryout_limit(尝试次数)。
fit()函数用于训练模型。如果不提供Y,则默认使用X。如果提供了val_X和val_Y,那么还会对模型进行验证。该函数将检查X和Y是否具有相同的长度,并通过步骤计算每个迭代周期的步骤数。然后使用concrete_select函数对数据进行特征选择,最后训练模型并输出总结。模型将使用Adam优化器,并计算均方误差进行损失。最后,将使用StopperCallback回调停止模型的训练。
import pandas as pdimport numpy as npimport talibimport tushare as ts# 先写出回测框架class Backtest(): def __init__(self, data, init_balance): self.data = data self.init_balance = init_balance self.position = 0 self.balance = init_balance self.equity = 0 def update_balance(self, price): self.equity = self.position * price self.balance = self.balance + self.equity def run(self, strategy): for i in range(1, len(self.data)): signal = strategy.generate_signal(self.data.iloc[:i, :]) price = self.data.iloc[i, 0] # 按照信号来调整持仓 if signal == 1: self.position = np.floor(self.balance / price) # 买入所有可用资金 elif signal == -1: self.position = 0 # 卖出所有股票 self.update_balance(price) print("日期:", self.data.index[i], "价格:", price, "信号:", signal, "账户价值:", self.balance) # 输出最后的回测结果 print("回测结果: 最开始的账户余额为", self.init_balance, ",最终的账户余额为", self.balance, ",因此您的盈亏为", self.balance-self.init_balance)# 再写出策略类class MACD_Strategy(): def __init__(self, fast_period, slow_period, signal_period): self.fast_period = fast_period self.slow_period = slow_period self.signal_period = signal_period def generate_signal(self, data): macd, signal, hist = talib.MACD(data["close"], fastperiod=self.fast_period, slowperiod=self.slow_period, signalperiod=self.signal_period) if hist[-1] > 0 and hist[-2] < 0: return 1 # 金叉,买入 elif hist[-1] < 0 and hist[-2] > 0: return -1 # 死叉,卖出 else: return 0 # 无操作# 最后的主程序if __name__ == "__main__": # 下载数据 data = ts.get_hist_data("600000", start="2020-01-01", end="2021-01-01") data = data.sort_index() # 按日期排序 data = data.loc[:, ["open", "high", "close", "low", "volume"]] # 只保留这五列 data.index = pd.to_datetime(data.index) # 初始化回测 backtest = Backtest(data, init_balance=100000) # 初始化策略 strategy = MACD_Strategy(fast_period=12, slow_period=26, signal_period=9) # 运行回测 backtest.run(strategy)
这是一段Python代码,用于导入Pandas、Numpy、Talib以及Tushare这几个Python库。Pandas和Numpy是用于数据处理的库,Talib是用于技术指标计算的库,Tushare是用于获取股市数据的库。
阅读全文