ranger优化器pytorch代码
时间: 2023-11-14 22:24:16 浏览: 325
深度学习大作业:Ranger优化器的相关研究python源码+文档说明+数据集+实验报告(高分项目)
以下是一个使用PyTorch实现的Ranger优化器的代码示例:
```python
import torch
from torch.optim.optimizer import Optimizer
class Ranger(Optimizer):
def __init__(self, params, lr=1e-3, alpha=0.5, k=6, N_sma_threshhold=5, betas=(0.95, 0.999), eps=1e-5, weight_decay=0):
defaults = dict(lr=lr, alpha=alpha, k=k, N_sma_threshhold=N_sma_threshhold, betas=betas, eps=eps, weight_decay=weight_decay)
super(Ranger, self).__init__(params, defaults)
def __setstate__(self, state):
super(Ranger, self).__setstate__(state)
def step(self, closure=None):
loss = None
if closure is not None:
loss = closure()
# calculate the moving average of the gradient
for group in self.param_groups:
for p in group['params']:
if p.grad is None:
continue
grad = p.grad.data.float()
state = self.state[p]
if not state:
state['step'] = 0
state['exp_avg'] = torch.zeros_like(p.data)
state['exp_avg_sq'] = torch.zeros_like(p.data)
state['step'] += 1
beta1, beta2 = group['betas']
eps = group['eps']
state['exp_avg'] = beta1 * state['exp_avg'] + (1 - beta1) * grad
state['exp_avg_sq'] = beta2 * state['exp_avg_sq'] + (1 - beta2) * grad ** 2
exp_avg, exp_avg_sq = state['exp_avg'], state['exp_avg_sq']
# calculate the variance adapted learning rate
state['S'] = torch.max(state['S'], torch.abs(grad))
S_max = state['S'].max()
state['N_sma'] = state['N_sma'] + 1
N_sma = state['N_sma']
radam_step_size = group['lr']
if N_sma >= group['N_sma_threshhold']:
radam_step_size = group['lr'] * S_max / (exp_avg_sq.sqrt() + eps)
if group['weight_decay'] != 0:
p.data.add_(-group['weight_decay'] * group['lr'], p.data)
# calculate the RAdam adaptive learning rate
beta2_t = beta2 ** state['step']
r_t = (exp_avg_sq.sqrt() * (1 - beta2_t)) / (state['exp_avg_sq_hat'].sqrt() + eps)
if state['step'] > 5:
r_t = torch.max(r_t, torch.tensor([group['alpha'] * (S_max / (state['S_hat'].max() + eps))]).to(r_t.device))
p.data.add_(-radam_step_size * r_t, exp_avg)
# calculate the smoothed weight denominator
state['S_hat'] = beta2 * state['S_hat'] + (1 - beta2) * state['S']
state['exp_avg_sq_hat'] = beta2 * state['exp_avg_sq_hat'] + (1 - beta2) * exp_avg_sq
state['denom'] = state['exp_avg_sq_hat'].sqrt() + eps
return loss
```
这是一个比较复杂的优化器实现,其中涉及了RAdam的一些优化,如计算moving average of the gradient、计算variance adapted learning rate、计算RAdam adaptive learning rate等。代码中有详细的注释,可以帮助理解每个步骤的具体实现。
阅读全文