我想使用ranger优化器替换掉adam优化器该如何实现,pytorch
时间: 2023-11-09 20:53:54 浏览: 225
中可以通过将优化器的类型从torch.optim.Adam()改为torch.optim.Ranger()来实现。具体实现代码如下:
```python
import torch.optim as optim
from ranger import Ranger # 导入ranger优化器
# 定义模型
model = ...
# 定义损失函数
criterion = ...
# 定义ranger优化器
optimizer = Ranger(model.parameters(), lr=0.001)
# 训练模型
for epoch in range(num_epochs):
for inputs, labels in train_loader:
optimizer.zero_grad()
outputs = model(inputs)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
```
需要注意的是,ranger优化器不是pytorch官方提供的优化器,需要先安装ranger优化器包,可以使用以下命令进行安装:
```
!pip install ranger-adaptive-optimizer
```
安装完成后,在代码中导入Ranger类即可。
相关问题
ranger优化器pytorch代码
以下是一个使用PyTorch实现的Ranger优化器的代码示例:
```python
import torch
from torch.optim.optimizer import Optimizer
class Ranger(Optimizer):
def __init__(self, params, lr=1e-3, alpha=0.5, k=6, N_sma_threshhold=5, betas=(0.95, 0.999), eps=1e-5, weight_decay=0):
defaults = dict(lr=lr, alpha=alpha, k=k, N_sma_threshhold=N_sma_threshhold, betas=betas, eps=eps, weight_decay=weight_decay)
super(Ranger, self).__init__(params, defaults)
def __setstate__(self, state):
super(Ranger, self).__setstate__(state)
def step(self, closure=None):
loss = None
if closure is not None:
loss = closure()
# calculate the moving average of the gradient
for group in self.param_groups:
for p in group['params']:
if p.grad is None:
continue
grad = p.grad.data.float()
state = self.state[p]
if not state:
state['step'] = 0
state['exp_avg'] = torch.zeros_like(p.data)
state['exp_avg_sq'] = torch.zeros_like(p.data)
state['step'] += 1
beta1, beta2 = group['betas']
eps = group['eps']
state['exp_avg'] = beta1 * state['exp_avg'] + (1 - beta1) * grad
state['exp_avg_sq'] = beta2 * state['exp_avg_sq'] + (1 - beta2) * grad ** 2
exp_avg, exp_avg_sq = state['exp_avg'], state['exp_avg_sq']
# calculate the variance adapted learning rate
state['S'] = torch.max(state['S'], torch.abs(grad))
S_max = state['S'].max()
state['N_sma'] = state['N_sma'] + 1
N_sma = state['N_sma']
radam_step_size = group['lr']
if N_sma >= group['N_sma_threshhold']:
radam_step_size = group['lr'] * S_max / (exp_avg_sq.sqrt() + eps)
if group['weight_decay'] != 0:
p.data.add_(-group['weight_decay'] * group['lr'], p.data)
# calculate the RAdam adaptive learning rate
beta2_t = beta2 ** state['step']
r_t = (exp_avg_sq.sqrt() * (1 - beta2_t)) / (state['exp_avg_sq_hat'].sqrt() + eps)
if state['step'] > 5:
r_t = torch.max(r_t, torch.tensor([group['alpha'] * (S_max / (state['S_hat'].max() + eps))]).to(r_t.device))
p.data.add_(-radam_step_size * r_t, exp_avg)
# calculate the smoothed weight denominator
state['S_hat'] = beta2 * state['S_hat'] + (1 - beta2) * state['S']
state['exp_avg_sq_hat'] = beta2 * state['exp_avg_sq_hat'] + (1 - beta2) * exp_avg_sq
state['denom'] = state['exp_avg_sq_hat'].sqrt() + eps
return loss
```
这是一个比较复杂的优化器实现,其中涉及了RAdam的一些优化,如计算moving average of the gradient、计算variance adapted learning rate、计算RAdam adaptive learning rate等。代码中有详细的注释,可以帮助理解每个步骤的具体实现。
分别阐述adam优化器和ranger优化器的优缺点
Adam优化器的优点:
- Adam优化器结合了动量法和RMSprop方法,可以在处理非凸优化问题时表现出色。
- Adam优化器具有自适应性,可以自动调整学习率,适应不同的参数和数据。
- Adam优化器的计算速度相对较快,收敛速度也较快。
Adam优化器的缺点:
- Adam优化器可能会受到噪声的影响,导致收敛不稳定。
- Adam优化器可能会受到超参数的影响,需要进行调参。
Ranger优化器的优点:
- Ranger优化器是一种新型的优化器,结合了RAdam和LookAhead方法,可以在性能和速度方面都有所提升。
- Ranger优化器具有自适应性,可以自动调整学习率,适应不同的参数和数据。
- Ranger优化器的计算速度相对较快,收敛速度也较快。
Ranger优化器的缺点:
- Ranger优化器需要调整更多的超参数,需要更多的实验和调参。
- Ranger优化器的代码实现相对较为复杂,需要更高的技术水平。
阅读全文