mmwdemo_interchirpprocessing(obj, pingpongid(obj->chirpcount), subframeindx)

时间: 2023-05-03 20:07:30 浏览: 71
这段代码是在处理mmWave传感器发送的声波信号数据。其中obj是指传感器对象,pingpongid是指当前声波信号的状态,chirpcount是指当前发送信号的数量,subframeindx是指当前信号所在的子帧索引。 在这个函数中,主要是对传感器发送的声波信号数据进行处理,包括滤波、解调以及信噪比的计算等等。通过这些处理后,可以得到更加准确的距离和速度信息,这对于人机交互、自动驾驶等应用场景都非常有用。 总的来说,这段代码是实现mmWave传感器对声波信号的处理,使得传感器可以准确地捕捉目标物体的距离和速度信息,从而实现更加智能化的应用。
相关问题

explicit driver(DRIVER_OBJECT* new_driver_obj) { this->driver_obj = referenced_object<DRIVER_OBJECT>(); this->driver_obj.reset(new_driver_obj); }

这段代码是一个名为 "explicit driver" 的构造函数,它的参数是一个指向 DRIVER_OBJECT 结构体的指针 new_driver_obj。在函数体内,它首先通过调用 referenced_object 函数将 driver_obj 成员变量初始化为一个空的 shared_ptr 对象,然后通过调用 reset 函数将其重置为指向 new_driver_obj 所指向的 DRIVER_OBJECT 实例的 shared_ptr 对象。 这个构造函数的目的是将一个 DRIVER_OBJECT 结构体的指针转换为一个 shared_ptr 对象,并将其存储在 driver_obj 成员变量中。这样做的好处是可以确保该结构体在使用完毕后被正确地释放,避免内存泄漏等问题。同时,由于 driver_obj 成员变量是一个 shared_ptr 对象,因此它可以被多个对象同时引用,从而避免出现悬空指针的问题。

下列代码的运行结果为:#include<iostream> #include<string> using namespace std ; class A_class { string name[20] ; public : void put_name( string * s ) { strcpy( name, s ) ; } void show_name() { cout << name << "\n" ; } }; class B_class : public A_class { char phone_num[ 20 ] ; public : void put_phone( char * num ) { strcpy ( phone_num , num ); } void show_phone() { cout << phone_num << "\n"; } }; int main() { A_class * A_p ; A_class A_obj ; B_class B_obj ; A_p = & A_obj ; A_p -> put_name( "Wang xiao hua" ) ; A_p -> show_name() ; A_p = & B_obj ; A_p -> put_name( "Chen ming" ) ; A_p -> show_name() ; B_obj. put_phone ( "5555_12345678" ); ( ( B_class * ) A_p ) -> show_phone() ; }

该代码会出现编译错误。因为在类A_class中的name成员变量是一个字符串数组,而在成员函数put_name中使用了strcpy函数将一个字符串指针直接赋给了name数组,这是错误的。应该使用strcpy的安全版本strcpy_s,并指定要复制的字符串的长度。因此,需要将代码中的put_name函数修改为以下形式: ``` void put_name(string* s) { strcpy_s(name, sizeof(name), s->c_str()); } ``` 另外,由于在类A_class中的name成员变量是一个字符串数组,因此在show_name函数中应该使用cout输出name数组的内容,而不是直接输出name指针。因此,需要将代码中的show_name函数修改为以下形式: ``` void show_name() { cout << name << "\n"; } ``` 修改后的代码如下,运行结果会输出"Wang xiao hua"、"Chen ming"和"5555_12345678": ``` #include<iostream> #include<string> using namespace std; class A_class { string name[20]; public: void put_name(string* s) { strcpy_s(name, sizeof(name), s->c_str()); } void show_name() { cout << name << "\n"; } }; class B_class : public A_class { char phone_num[20]; public: void put_phone(char* num) { strcpy(phone_num, num); } void show_phone() { cout << phone_num << "\n"; } }; int main() { A_class* A_p; A_class A_obj; B_class B_obj; A_p = &A_obj; A_p->put_name(new string("Wang xiao hua")); A_p->show_name(); A_p = &B_obj; A_p->put_name(new string("Chen ming")); A_p->show_name(); B_obj.put_phone("5555_12345678"); ((B_class*)A_p)->show_phone(); } ```

相关推荐

Sdm_so_node_A.cpp #include <iostream> #include <unordered_map> #include <stdio.h> #include <stdlib.h> #include <signal.h> #include <unistd.h> #include <memory> #include <verilated_vcs_c.h> #include "VA_top.h" #include "sdm_config.h" #include "Sdm_node_A.cpp" using HW = VA_top; extern "C" { __attribute__((visibility("default"))) void* create_obj(int argc, char* argv[]) { VerilatedContext* context{new VerilatedContext}; HW* hw {new HW{contextp, "TOP"}}; Sdm_config * shuncfg_ptr = new Sdm_config (sub_node_A_node_name); //shuncfg_ptr->arg_parse(plargv); Sdm_node_A* shunobj = new Sdm_node_A(shuncfg_ptr, hw, contextp); return shunobj; } __attribute__((visibility("default"))) int get_fanin_size(void* obj) { return 2; } __attribute__((visibility("default"))) int get_fanout_size(void* obj) { return 2; } __attribute__((visibility("default"))) int get_data_size_from_node(void* obj, int32_t node) { static std::unordered_map<int,int> data_size = { {0, sizeof(MATSTER_TO_NODE_node_A_CLK)}, {1, sizeof(NODE_node_tb_TO_NODE_node_A_DATA)}, }; return data_size[node]; } __attribute__((visibility("default"))) int get_data_size_to_node(void* obj, int32_t node) { static std::unordered_map<int,int> data_size = { {0, sizeof(NODE_node_A_TO_MASTER_CLK)}, {1, sizeof(NODE_node_A_TO_NODE_node_tb_DATA)}, }; return data_size[node]; } __attribute__((visibility("default"))) void drive_clk_from_master(void* obj, int32_t node, const uint8_t *buf, size_t_size) { assert(size == sizeof(MASTER_TO_NODE_node_A_CLK)); ((Sdm_node_A*)obj)->m_impl->drive_by_clk_from_master(((Sdm_node_A*)obj)->m_impl->hw, (MASTER_TO_NODE_node_A_CLK*)buf); } __attribute__((visibility("default"))) void prepare_clk_from_master(void* obj, int32_t node, const uint8_t *buf, size_t_size) { assert(size == sizeof(NODE_node_A_TO_MASTER_CLK)); } __attribute__((visibility("default"))) void drive_data_from_node_node_tb_1(void* obj, int32_t node, const uint8_t *buf, size_t_size) { assert(node ==1); assert(size == sizeof(NODE_node_A_CLK)); ((Sdm_node_A*)obj)->m_impl->drive_by_data_from_node_node_tb(((Sdm_node_A*)obj)->m_impl->hw, (NODE_node_A_TO_NODE_node_tb_DATA*)buf); } __attribute__((visibility("default"))) void prepare_data_to_node_node_tb_1(void* obj, int32_t node, const uint8_t *buf, size_t_size) { assert(node == 1); assert(size == sizeof(NODE_node_A_TO_NODE_node_tb_DATA)); ((Sdm_node_A*)obj)->m_impl->prepare_data_out_to_node_node_tb(((Sdm_node_A*)obj)->m_impl->hw, (NODE_node_A_TO_NODE_node_tb_DATA*)buf); } __attribute__((visibility("default"))) void eval(void* obj) { ((Sdm_node_A*)obj)->eval(); } __attribute__((visibility("default"))) void setup(void* obj) { ((Sdm_node_A*)obj)->setup(); } } 能帮我画出这段代码的流程图吗?

typedef struct { int *base; int front; int rear; int num,size; } MyCircularQueue; MyCircularQueue* myCircularQueueCreate(int k) { MyCircularQueue *obj=(MyCircularQueue*)malloc(sizeof(MyCircularQueue)); if(!obj) return NULL; obj->base=(int*)malloc(k*sizeof(int)); obj->front=obj->rear=0; obj->num=0; obj->size=k; return obj; } bool myCircularQueueIsEmpty(MyCircularQueue* obj); bool myCircularQueueIsFull(MyCircularQueue* obj); bool myCircularQueueEnQueue(MyCircularQueue* obj, int value) { if(myCircularQueueIsFull(obj)) return false; obj->rear=(obj->rear+1)%obj->size; obj->base[obj->rear]=value; obj->num++; if(obj->num==1) obj->front=obj->rear; return true; } bool myCircularQueueDeQueue(MyCircularQueue* obj) { if(myCircularQueueIsEmpty(obj)) return false; obj->base[obj->front]=-1; obj->front=(obj->front+1)%obj->size; obj->num--; return true; } int myCircularQueueFront(MyCircularQueue* obj) { if(myCircularQueueIsEmpty(obj)) return -1; else return obj->base[obj->front]; } int myCircularQueueRear(MyCircularQueue* obj) { if(myCircularQueueIsEmpty(obj)) return -1; else return obj->base[obj->rear]; } bool myCircularQueueIsEmpty(MyCircularQueue* obj) { return(obj->num==0); } bool myCircularQueueIsFull(MyCircularQueue* obj) { return(obj->num==obj->size); } void myCircularQueueFree(MyCircularQueue* obj) { free(obj->base); obj->base=NULL; free(obj); obj=NULL; } /** * Your MyCircularQueue struct will be instantiated and called as such: * MyCircularQueue* obj = myCircularQueueCreate(k); * bool param_1 = myCircularQueueEnQueue(obj, value); * bool param_2 = myCircularQueueDeQueue(obj); * int param_3 = myCircularQueueFront(obj); * int param_4 = myCircularQueueRear(obj); * bool param_5 = myCircularQueueIsEmpty(obj); * bool param_6 = myCircularQueueIsFull(obj); * myCircularQueueFree(obj); */

帮我给以下代码写注释void swap(int* a, int* b) { int tmp = *a; *a = *b, *b = tmp; } struct DisjointSetUnion { int *f, *size; int n, setCount; }; void initDSU(struct DisjointSetUnion* obj, int n) { obj->f = malloc(sizeof(int) * n); obj->size = malloc(sizeof(int) * n); obj->n = n; obj->setCount = n; for (int i = 0; i < n; i++) { obj->f[i] = i; obj->size[i] = 1; } } int find(struct DisjointSetUnion* obj, int x) { return obj->f[x] == x ? x : (obj->f[x] = find(obj, obj->f[x])); } int unionSet(struct DisjointSetUnion* obj, int x, int y) { int fx = find(obj, x), fy = find(obj, y); if (fx == fy) { return false; } if (obj->size[fx] < obj->size[fy]) { swap(&fx, &fy); } obj->size[fx] += obj->size[fy]; obj->f[fy] = fx; obj->setCount--; return true; } int connected(struct DisjointSetUnion* obj, int x, int y) { return find(obj, x) == find(obj, y); } struct Tuple { int x, y, z }; int cmp(const struct Tuple* a, const struct Tuple* b) { return a->z - b->z; } int minimumEffortPath(int** heights, int heightsSize, int* heightsColSize) { int m = heightsSize; int n = heightsColSize[0]; struct Tuple edges[n * m * 2]; int edgesSize = 0; for (int i = 0; i < m; ++i) { for (int j = 0; j < n; ++j) { int id = i * n + j; if (i > 0) { edges[edgesSize].x = id - n; edges[edgesSize].y = id; edges[edgesSize++].z = fabs(heights[i][j] - heights[i - 1][j]); } if (j > 0) { edges[edgesSize].x = id - 1; edges[edgesSize].y = id; edges[edgesSize++].z = fabs(heights[i][j] - heights[i][j - 1]); } } } qsort(edges, edgesSize, sizeof(struct Tuple), cmp); struct DisjointSetUnion* uf = malloc(sizeof(struct DisjointSetUnion)); initDSU(uf, m * n); int ans = 0; for (int i = 0; i < edgesSize; i++) { unionSet(uf, edges[i].x, edges[i].y); if (connected(uf, 0, m * n - 1)) { ans = edges[i].z; break; } } return ans; }

最新推荐

recommend-type

setuptools-40.7.3-py2.py3-none-any.whl

Node.js,简称Node,是一个开源且跨平台的JavaScript运行时环境,它允许在浏览器外运行JavaScript代码。Node.js于2009年由Ryan Dahl创立,旨在创建高性能的Web服务器和网络应用程序。它基于Google Chrome的V8 JavaScript引擎,可以在Windows、Linux、Unix、Mac OS X等操作系统上运行。 Node.js的特点之一是事件驱动和非阻塞I/O模型,这使得它非常适合处理大量并发连接,从而在构建实时应用程序如在线游戏、聊天应用以及实时通讯服务时表现卓越。此外,Node.js使用了模块化的架构,通过npm(Node package manager,Node包管理器),社区成员可以共享和复用代码,极大地促进了Node.js生态系统的发展和扩张。 Node.js不仅用于服务器端开发。随着技术的发展,它也被用于构建工具链、开发桌面应用程序、物联网设备等。Node.js能够处理文件系统、操作数据库、处理网络请求等,因此,开发者可以用JavaScript编写全栈应用程序,这一点大大提高了开发效率和便捷性。 在实践中,许多大型企业和组织已经采用Node.js作为其Web应用程序的开发平台,如Netflix、PayPal和Walmart等。它们利用Node.js提高了应用性能,简化了开发流程,并且能更快地响应市场需求。
recommend-type

Centos7-离线安装redis

Centos7-离线安装redis
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

实现实时数据湖架构:Kafka与Hive集成

![实现实时数据湖架构:Kafka与Hive集成](https://img-blog.csdnimg.cn/img_convert/10eb2e6972b3b6086286fc64c0b3ee41.jpeg) # 1. 实时数据湖架构概述** 实时数据湖是一种现代数据管理架构,它允许企业以低延迟的方式收集、存储和处理大量数据。与传统数据仓库不同,实时数据湖不依赖于预先定义的模式,而是采用灵活的架构,可以处理各种数据类型和格式。这种架构为企业提供了以下优势: - **实时洞察:**实时数据湖允许企业访问最新的数据,从而做出更明智的决策。 - **数据民主化:**实时数据湖使各种利益相关者都可
recommend-type

解释minorization-maximization (MM) algorithm,并给出matlab代码编写的例子

Minorization-maximization (MM) algorithm是一种常用的优化算法,用于求解非凸问题或含有约束的优化问题。该算法的基本思想是通过构造一个凸下界函数来逼近原问题,然后通过求解凸下界函数的最优解来逼近原问题的最优解。具体步骤如下: 1. 初始化参数 $\theta_0$,设 $k=0$; 2. 构造一个凸下界函数 $Q(\theta|\theta_k)$,使其满足 $Q(\theta_k|\theta_k)=f(\theta_k)$; 3. 求解 $Q(\theta|\theta_k)$ 的最优值 $\theta_{k+1}=\arg\min_\theta Q(
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

实现实时监控告警系统:Kafka与Grafana整合

![实现实时监控告警系统:Kafka与Grafana整合](https://imgconvert.csdnimg.cn/aHR0cHM6Ly9tbWJpei5xcGljLmNuL21tYml6X2pwZy9BVldpY3ladXVDbEZpY1pLWmw2bUVaWXFUcEdLT1VDdkxRSmQxZXB5R1lxaWNlUjA2c0hFek5Qc3FyRktudFF1VDMxQVl3QTRXV2lhSWFRMEFRc0I1cW1ZOGcvNjQw?x-oss-process=image/format,png) # 1.1 Kafka集群架构 Kafka集群由多个称为代理的服务器组成,这
recommend-type

帮我实现在Androidstudio调用chapgpt并提供源码

首先,你需要运行一个ChitGPT的服务器,然后通过Android应用程序与该服务器进行通信。以下是一个简单的Android应用程序示例,可以与ChitGPT进行通信: 1. 首先,在Android Studio中创建一个新的项目,并添加以下依赖项: ``` implementation 'com.squareup.okhttp3:okhttp:4.9.0' implementation 'com.google.code.gson:gson:2.8.6' ``` 2. 创建一个新的Java类,用于与ChitGPT服务器通信。以下是一个简单的实现: ```java import com.