X=dataset.iloc[:,2:-1] y=dataset.iloc[:,1] print(dataset.shape) from sklearn.model_selection import train_test_split X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2,random_state=0) from sklearn.preprocessing import StandardScaler sc = StandardScaler() X_train =sc.fit_transform(X_train) X_test= sc.transform(X_test) from sklearn.ensemble import RandomForestRegressor rf=RandomForestRegressor(n_estimators=200,random_state=0) #rf.fit(X_train, y_train) #拟合训练集 rf.fit(X_train, y_train) #对训练集和测试集进行预测 y_train_pred=rf.predict(X_train) y_test_pred=rf.predict(X_test) print(y_test_pred)
时间: 2023-08-18 20:52:06 浏览: 86
这段代码的作用是使用随机森林算法对一个数据集进行回归分析。首先,将数据集分为自变量(X)和因变量(y),然后使用train_test_split函数将数据集分为训练数据集和测试数据集。接着,使用StandardScaler函数对自变量进行标准化处理,使得数据分布更加符合正态分布。最后,使用RandomForestRegressor函数建立随机森林回归模型,并对训练集和测试集进行预测,并将预测结果输出。
相关问题
X = data.iloc[:, :-1]
As an AI language model, I do not have access to the specific dataset that you are working with, so I can only provide a general explanation of this line of code.
The code "X = data.iloc[:, :-1]" is used to assign a subset of a dataset to a variable named "X".
The "data" variable is assumed to be a pandas DataFrame, which is a tabular data structure that can hold data of different types in columns.
The "iloc" method is used to select rows and columns of the DataFrame by their integer position.
The first parameter, ":", specifies that we want to select all rows of the DataFrame.
The second parameter, ":-1", specifies that we want to select all columns of the DataFrame except for the last one. The "-1" index indicates the last column, so ":-1" means "all columns up to but not including the last one".
Therefore, the "X" variable will contain all the rows of the DataFrame except for the last column. This is often done in machine learning tasks where the last column represents the target variable or output that we want to predict, and the remaining columns represent the input features.
features = dataset.iloc[:, :-1].values labels = dataset.iloc[:, -1].values
这段代码是用来从一个数据集中提取出特征和标签的。其中 `iloc` 是 pandas 库中的方法,用于基于整数位置来访问数据。`: , :-1` 表示选取所有的行,但是只选取除了最后一列之外的所有列,也就是说,选取的是数据集中的特征。`: , -1` 表示选取所有的行,但是只选取最后一列,也就是说,选取的是数据集中的标签。`.values` 表示将选取到的数据转化为 numpy 数组。因此,这段代码将数据集中的特征和标签分别存储到了 `features` 和 `labels` 两个变量中。
阅读全文