判断vector内部为空

时间: 2023-09-05 15:07:15 浏览: 48
可以使用vector的empty()函数来判断vector内部是否为空。如果为空,该函数将返回true,否则返回false。示例代码如下: ```c++ #include <iostream> #include <vector> using namespace std; int main() { vector<int> v1; vector<int> v2 = {1, 2, 3}; if (v1.empty()) { cout << "v1 is empty" << endl; } else { cout << "v1 is not empty" << endl; } if (v2.empty()) { cout << "v2 is empty" << endl; } else { cout << "v2 is not empty" << endl; } return 0; } ``` 输出结果为: ``` v1 is empty v2 is not empty ```
相关问题

c++ vector 动态数组

C中的vector是一种动态数组数据结构。相对于静态数组,vector的大小是动态变化的,可以根据需要自动调整大小。 vector的底层实现是一个连续的存储空间,可以通过指针进行访问。当vector的大小超过了其内部数组的容量时,会重新分配更大的存储空间,并将原有数据拷贝到新的存储空间中。 使用vector需要引入头文件< vector.h >。通过声明vector变量并指定其存储的数据类型,可以创建一个空的vector对象。可以使用push_back()函数向vector末尾添加元素,使用pop_back()函数删除vector末尾的元素。可以使用[]运算符或at()函数来访问vector中的元素。 vector提供了一些其他有用的成员函数,如size()可以获取vector的当前大小,capacity()可以获取vector的当前容量,empty()可以判断vector是否为空,clear()可以清空vector中的所有元素等。 使用vector时需要注意的是,当插入或删除元素时,会引起内部数组的重新分配,可能会造成性能上的开销。因此,如果事先知道vector的大小,可以使用reserve()函数来预分配足够的存储空间,以避免频繁的重新分配。 总之,vector是C中常用的一种动态数组数据结构,它提供了方便的操作函数,使得动态数组的使用更加灵活和方便。

C++ vector容器介绍

C++中的vector是一个动态数组,可以根据需要随时调整大小。它是标准库中最常用的容器之一,提供了许多方便的成员函数和操作符重载。 使用vector容器需要包含头文件`<vector>`。 下面是一些vector容器的特点和常用操作: 1. 动态大小:vector可以根据需要动态调整大小,可以在任意位置插入或删除元素。 2. 快速随机访问:vector支持通过索引快速访问元素,时间复杂度为O(1)。 3. 连续存储:vector的元素在内存中是连续存储的,这样可以提高访问效率。 4. 自动内存管理:vector会自动管理内部的动态内存分配和释放,无需手动管理。 5. 范围检查:vector会在访问操作时进行边界检查,确保不越界。 以下是一些常用的vector操作: - `push_back(value)`:在vector末尾添加一个元素。 - `pop_back()`:删除vector末尾的元素。 - `size()`:返回vector中元素的个数。 - `empty()`:判断vector是否为空。 - `clear()`:清空vector中的所有元素。 - `at(index)`:返回指定索引位置的元素,并进行范围检查。 - `front()`:返回第一个元素。 - `back()`:返回最后一个元素。 - `insert(iterator, value)`:在指定位置插入一个元素。 - `erase(iterator)`:删除指定位置的元素。 - `begin()`和`end()`:返回指向vector第一个元素和最后一个元素之后的迭代器,用于循环遍历。 vector容器提供了丰富的功能,并且易于使用,适合在需要动态大小和快速访问的情况下使用。

相关推荐

std::vector<std::vector<int>> LidarObjectSeg::Run(const pcl::PointCloud::Ptr &inCloud) const { if (inCloud->empty()) return {}; std::vector<std::array<double, 3>> gridPoints; GridParam gridParam = this->EstimateGridParam(inCloud, gridPoints); std::multimap<int, int> hashTable = this->UpdateHashTable(gridPoints, gridParam); std::vector<int> clusterIndices(inCloud->size(), -1); int curClusterIdx = 0; START_HOST_TIMING(ExtractClusters) for (std::size_t i = 0; i < inCloud->size(); ++i) { if (clusterIndices[i] >= 0) continue; const auto &curGridPoint = gridPoints[i]; std::vector<int> neighborIndices = this->GetNeighbors(curGridPoint, gridParam, hashTable); for (int neighborIdx : neighborIndices) { if (neighborIdx == i) continue; int curPointVoxelIdx = clusterIndices[i]; int neighborVoxelIdx = clusterIndices[neighborIdx]; if (curPointVoxelIdx >= 0 && neighborVoxelIdx >= 0) { if (curPointVoxelIdx != neighborVoxelIdx) this->MergeClusters(clusterIndices, curPointVoxelIdx, neighborVoxelIdx); } else { if (curPointVoxelIdx < 0) clusterIndices[i] = neighborVoxelIdx; else clusterIndices[neighborIdx] = curPointVoxelIdx; } } if (clusterIndices[i] < 0 && neighborIndices.size() >= numMinPoints_) { for (int neighborIdx : neighborIndices) { clusterIndices[neighborIdx] = curClusterIdx; } curClusterIdx++; } } STOP_HOST_TIMING(ExtractClusters) START_HOST_TIMING(GetAllClusters) std::vector<std::vector<int>> allClusters = this->GetAllClusters(clusterIndices); STOP_HOST_TIMING(GetAllClusters) PRINT_ALL_TIMING() return allClusters; }

Man.h #pragma once #include "Chess.h" class Man { public: void init(Chess* chess); void go(); private: Chess* chess; }; AI.h #pragma once #include "Chess.h" class AI { public: void init(Chess* chess); void go(); private: Chess* chess; vector<vector<int>>scoreMap; private: void calculateScore(); ChessPos think();//private权限 }; Chess.h #pragma once #include<graphics.h> #include<vector> using namespace std; typedef enum { CHESS_WHITE = -1, // 白方 CHESS_BLACK = 1 // 黑方 } chess_kind_t; struct ChessPos { int row; int col; ChessPos(int r = 0, int c = 0) :row(r), col(c) {} }; class Chess { public: Chess(int gradeSize, int marginX, int marginY, float chessSize); // 棋盘的初始化:加载棋盘的图片资源,初始化棋盘的相关数据 void init(); // 判断在指定坐标(x,y)位置,是否是有效点击 // 如果是有效点击,把有效点击的位置(行,列)保存在参数pos中 bool clickBoard(int x, int y, ChessPos* pos); // 在棋盘的指定位置(pos), 落子(kind) void chessDown(ChessPos* pos, chess_kind_t kind); // 获取棋盘的大小(13线、15线、19线) int getGradeSize(); // 获取指定位置是黑棋,还是白棋,还是空白 int getChessData(ChessPos* pos); int getChessData(int row, int col); // 判断棋局是否结束 bool checkOver(); //bool checkWin(); private: // 棋盘尺寸 int gradeSize; float margin_x;//49; int margin_y;// 49; float chessSize; //棋子大小(棋盘方格大小) IMAGE chessBlackImg; IMAGE chessWhiteImg; // 存储当前游戏棋盘和棋子的情况,空白为0,黑子1,白子-1 vector<vector<int>> chessMap; // 标示下棋方, true:黑棋方 false: AI 白棋方(AI方) bool playerFlag; void updateGameMap(ChessPos* pos); bool checkWin();//如果胜负已分,就返回true,否则返回假 ChessPos lastPos;//最近落子点的位置 }; //对棋盘进行数据初始化 ChessGame.h #pragma once #include "AI.h" #include "Chess.h" #include "Man.h" #include<iostream> #include<vector> using namespace std; class ChessGame { private: Man* man; AI* ai; Chess* chess; public: ChessGame(Man *man, AI *ai, Chess *chess); void play(); };中的局部变量及解释

DWORD WINAPI ThreadFunc(LPVOID lpParam) //解码 { start: HWND hWnd = (HWND)lpParam; // CArinc429MHUDDlg * pTaskMain = (CArinc429MHUDDlg *) lpParam; DWORD d = 0; BYTE chno = 0; ///设置通道1为接受 BYTE btTriggerLevel = 0; int i = 0; #ifndef CARD_DEBUG while (isNeedThread) ////////////////// { // Get trigger level btTriggerLevel = stTriggerLevel.Chan0Depth_I; // Rx channel 1~CHNO_RMAX // ---------------------------------------------------------------- if (btTriggerLevel > 0) // triggered//xu yao guo lv { if (IsFIFOTriggered_R(hCard, chno))//判断是否到达触发深度 { EnablReadFIFO(hCard, chno);//使能读FIFO数据 while ((ReadFIFOStatus_R(hCard, chno) != FIFOEmpty) && (ReadFIFOStatus_R(hCard, chno) != FIFOError)) //当recieveFIFO 不空且不溢出时 { d = ReceiveData(hCard, chno); if ((wdMode == C429_SELFTEST) && (stComm[chno / 2].iSelParity == C429_PARITY_NONE)) // resume 429 Word { d = Resume429Word(d);//429字转化计算机字,解码 } Save_ReceiveData(d, ReceiveData_Vector + i); } DisablReadFIFO(hCard);//禁止读FIFO数据 } } else // untriggered//不需要过滤 . { if ((ReadFIFOStatus_R(hCard, chno) != FIFOEmpty) && (ReadFIFOStatus_R(hCard, chno) != FIFOError))//读取状态当recieveFIFO 不空且不溢出时 { EnablReadFIFO(hCard, chno);//使能读FIFO数据 d = ReceiveData(hCard, chno); if ((wdMode == C429_SELFTEST) && (stComm[chno / 2].iSelParity == C429_PARITY_NONE)) // resume 429 Word { d = Resume429Word(d); } DWORD temp; temp = d & 0x00FF; short s; switch (temp)

最新推荐

recommend-type

Dijkstra算法的详细介绍

dijkstra算法
recommend-type

Matlab通信原理-QPSK数字通信系统的仿真

信源为随机产生的0/1序列; 8倍过采样;画出发送序列时域波形和频谱。 进行根升余弦成型滤波,画出滤波后的时域波形及频谱图。 信道加入高斯白噪声:接收端匹配滤波,下采样后判决。画出接收端各处的时域波形和频谱。 改变信号和噪声功率的相对大小,观察并分析误码率的变化。画出误码率随信噪比变化的曲线。 详见:https://mp.weixin.qq.com/s/v91q-ruSoYmBVeqtis34tw
recommend-type

搜索引擎 PHP源码 免费开源

搜索引擎开源 易搜是一个性能极佳的搜索引擎,免费开源 易搜采用自主研发的 BiuSQL 数据库储存数据,不需要安装数据库,下载源码解压缩即可使用 项目文件结构 > ./css -文件夹-储存CSS渲染资源<br> ./help -文件夹-易搜的使用帮助和申明事件<br> ./img -文件夹-用来储存易搜图片文件<br> ./js -文件夹-储存JavaScript脚本资源<br> ./s -文件夹-易搜搜索功能核心算法<br> ./console -文件夹-易搜控制台<br> ./备份 -文件夹-易搜开发以及版本备份储存<br> ./index.php -文件-易搜首页初始化文件<br> ./verification.html -文件-易搜验证以及防攻击文件<br> ./项目结构 -文件-项目结构文件<br>
recommend-type

机器学习作业基于 Python 的历史照片EXIF元数据 GIS机器学习分析源码+项目说明.zip

机器学习作业基于 Python 的历史照片EXIF元数据 GIS机器学习分析源码+项目说明.zip 机器学习作业基于 Python 的历史照片EXIF元数据 GIS机器学习分析源码+项目说明.zip 机器学习作业基于 Python 的历史照片EXIF元数据 GIS机器学习分析源码+项目说明.zip 适用目标:计算机,电子信息工程、数学等专业的大学生课程设计、期末大作业或毕业设计,作为“参考资料”使用。
recommend-type

利用迪杰斯特拉算法的全国交通咨询系统设计与实现

全国交通咨询模拟系统是一个基于互联网的应用程序,旨在提供实时的交通咨询服务,帮助用户找到花费最少时间和金钱的交通路线。系统主要功能包括需求分析、个人工作管理、概要设计以及源程序实现。 首先,在需求分析阶段,系统明确了解用户的需求,可能是针对长途旅行、通勤或日常出行,用户可能关心的是时间效率和成本效益。这个阶段对系统的功能、性能指标以及用户界面有明确的定义。 概要设计部分详细地阐述了系统的流程。主程序流程图展示了程序的基本结构,从开始到结束的整体运行流程,包括用户输入起始和终止城市名称,系统查找路径并显示结果等步骤。创建图算法流程图则关注于核心算法——迪杰斯特拉算法的应用,该算法用于计算从一个节点到所有其他节点的最短路径,对于求解交通咨询问题至关重要。 具体到源程序,设计者实现了输入城市名称的功能,通过 LocateVex 函数查找图中的城市节点,如果城市不存在,则给出提示。咨询钱最少模块图是针对用户查询花费最少的交通方式,通过 LeastMoneyPath 和 print_Money 函数来计算并输出路径及其费用。这些函数的设计体现了算法的核心逻辑,如初始化每条路径的距离为最大值,然后通过循环更新路径直到找到最短路径。 在设计和调试分析阶段,开发者对源代码进行了严谨的测试,确保算法的正确性和性能。程序的执行过程中,会进行错误处理和异常检测,以保证用户获得准确的信息。 程序设计体会部分,可能包含了作者在开发过程中的心得,比如对迪杰斯特拉算法的理解,如何优化代码以提高运行效率,以及如何平衡用户体验与性能的关系。此外,可能还讨论了在实际应用中遇到的问题以及解决策略。 全国交通咨询模拟系统是一个结合了数据结构(如图和路径)以及优化算法(迪杰斯特拉)的实用工具,旨在通过互联网为用户提供便捷、高效的交通咨询服务。它的设计不仅体现了技术实现,也充分考虑了用户需求和实际应用场景中的复杂性。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【实战演练】基于TensorFlow的卷积神经网络图像识别项目

![【实战演练】基于TensorFlow的卷积神经网络图像识别项目](https://img-blog.csdnimg.cn/20200419235252200.png?x-oss-process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L3FxXzM3MTQ4OTQw,size_16,color_FFFFFF,t_70) # 1. TensorFlow简介** TensorFlow是一个开源的机器学习库,用于构建和训练机器学习模型。它由谷歌开发,广泛应用于自然语言
recommend-type

CD40110工作原理

CD40110是一种双四线双向译码器,它的工作原理基于逻辑编码和译码技术。它将输入的二进制代码(一般为4位)转换成对应的输出信号,可以控制多达16个输出线中的任意一条。以下是CD40110的主要工作步骤: 1. **输入与编码**: CD40110的输入端有A3-A0四个引脚,每个引脚对应一个二进制位。当你给这些引脚提供不同的逻辑电平(高或低),就形成一个四位的输入编码。 2. **内部逻辑处理**: 内部有一个编码逻辑电路,根据输入的四位二进制代码决定哪个输出线应该导通(高电平)或保持低电平(断开)。 3. **输出**: 输出端Y7-Y0有16个,它们分别与输入的编码相对应。当特定的
recommend-type

全国交通咨询系统C++实现源码解析

"全国交通咨询系统C++代码.pdf是一个C++编程实现的交通咨询系统,主要功能是查询全国范围内的交通线路信息。该系统由JUNE于2011年6月11日编写,使用了C++标准库,包括iostream、stdio.h、windows.h和string.h等头文件。代码中定义了多个数据结构,如CityType、TrafficNode和VNode,用于存储城市、交通班次和线路信息。系统中包含城市节点、交通节点和路径节点的定义,以及相关的数据成员,如城市名称、班次、起止时间和票价。" 在这份C++代码中,核心的知识点包括: 1. **数据结构设计**: - 定义了`CityType`为short int类型,用于表示城市节点。 - `TrafficNodeDat`结构体用于存储交通班次信息,包括班次名称(`name`)、起止时间(原本注释掉了`StartTime`和`StopTime`)、运行时间(`Time`)、目的地城市编号(`EndCity`)和票价(`Cost`)。 - `VNodeDat`结构体代表城市节点,包含了城市编号(`city`)、火车班次数(`TrainNum`)、航班班次数(`FlightNum`)以及两个`TrafficNodeDat`数组,分别用于存储火车和航班信息。 - `PNodeDat`结构体则用于表示路径中的一个节点,包含城市编号(`City`)和交通班次号(`TraNo`)。 2. **数组和变量声明**: - `CityName`数组用于存储每个城市的名称,按城市编号进行索引。 - `CityNum`用于记录城市的数量。 - `AdjList`数组存储各个城市的线路信息,下标对应城市编号。 3. **算法与功能**: - 系统可能实现了Dijkstra算法或类似算法来寻找最短路径,因为有`MinTime`和`StartTime`变量,这些通常与路径规划算法有关。 - `curPath`可能用于存储当前路径的信息。 - `SeekCity`函数可能是用来查找特定城市的函数,其参数是一个城市名称。 4. **编程语言特性**: - 使用了`#define`预处理器指令来设置常量,如城市节点的最大数量(`MAX_VERTEX_NUM`)、字符串的最大长度(`MAX_STRING_NUM`)和交通班次的最大数量(`MAX_TRAFFIC_NUM`)。 - `using namespace std`导入标准命名空间,方便使用iostream库中的输入输出操作。 5. **编程实践**: - 代码的日期和作者注释显示了良好的编程习惯,这对于代码维护和团队合作非常重要。 - 结构体的设计使得数据组织有序,方便查询和操作。 这个C++代码实现了全国交通咨询系统的核心功能,涉及城市节点管理、交通班次存储和查询,以及可能的路径规划算法。通过这些数据结构和算法,用户可以查询不同城市间的交通信息,并获取最优路径建议。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依