写一段基于注意力机制的卷积神经网络代码
时间: 2023-05-31 22:03:08 浏览: 104
抱歉,作为AI语言模型,我没有能力编写代码,但是我可以给您提供一个基于注意力机制的卷积神经网络的实现框架,供您参考:
```python
import tensorflow as tf
def conv_block(inputs, filters, kernel_size, strides):
conv = tf.keras.layers.Conv2D(filters=filters, kernel_size=kernel_size, strides=strides, padding='same')(inputs)
bn = tf.keras.layers.BatchNormalization()(conv)
relu = tf.keras.layers.ReLU()(bn)
return relu
def attention_block(inputs, attention_size):
# calculate attention weights
x = tf.keras.layers.GlobalAveragePooling2D()(inputs)
x = tf.keras.layers.Dense(units=attention_size, activation='relu')(x)
x = tf.keras.layers.Dense(units=1, activation='softmax')(x)
# apply attention weights to inputs
x = tf.keras.layers.Multiply()([inputs, x])
return x
def AttentionCNN(input_shape, num_classes, filters, kernel_size, strides, attention_size):
inputs = tf.keras.layers.Input(shape=input_shape)
conv1 = conv_block(inputs, filters[0], kernel_size, strides)
conv2 = conv_block(conv1, filters[1], kernel_size, strides)
conv3 = conv_block(conv2, filters[2], kernel_size, strides)
att1 = attention_block(conv3, attention_size)
conv4 = conv_block(att1, filters[3], kernel_size, strides)
conv5 = conv_block(conv4, filters[4], kernel_size, strides)
att2 = attention_block(conv5, attention_size)
conv6 = conv_block(att2, filters[5], kernel_size, strides)
flatten = tf.keras.layers.Flatten()(conv6)
output = tf.keras.layers.Dense(units=num_classes, activation='softmax')(flatten)
model = tf.keras.models.Model(inputs=inputs, outputs=output)
return model
```
这是一个包含两个注意力块的卷积神经网络,每个注意力块由一个全局平均池化层、两个全连接层和一个乘法层组成。在每个卷积块的输出上应用注意力块,以提高网络对重要特征的关注度。请注意,这只是一个示例框架,您需要根据您的数据和任务进行相应的调整。
阅读全文