请写一段连续动作空间的强化学习代码
时间: 2024-10-16 20:02:24 浏览: 28
在强化学习中,处理连续动作空间通常涉及使用基于梯度的策略优化算法,如Policy Gradient。这里是一个简化版的Python代码示例,使用了PyTorch库,假设我们有一个环境模型`Env`,它返回状态、奖励和是否终止:
```python
import torch
from torch.distributions import Normal
class Policy(nn.Module):
def __init__(self, state_dim, action_dim, hidden_size):
super().__init__()
self.fc1 = nn.Linear(state_dim, hidden_size)
self.fc_mu = nn.Linear(hidden_size, action_dim)
self.fc_std = nn.Linear(hidden_size, action_dim)
# 这里假设action_dim是一维连续值
def forward(self, state):
x = F.relu(self.fc1(state))
mu = self.fc_mu(x)
std = torch.exp(self.fc_std(x)) # 对标准差取exp确保正数
return Normal(mu, std) # 创建一个正态分布,表示我们的策略
def select_action(state, policy_net, device):
state = torch.FloatTensor(state).to(device)
distribution = policy_net(state)
action = distribution.sample() # 根据策略采样行动
log_prob = distribution.log_prob(action) # 记录log概率以便计算优势函数
return action.item(), log_prob.item()
# 强化学习训练循环
policy_net = Policy(state_dim, action_dim, hidden_size).to(device)
optimizer = torch.optim.Adam(policy_net.parameters())
for episode in range(num_episodes):
state = env.reset()
done = False
total_reward = 0
while not done:
action, log_prob = select_action(state, policy_net, device)
next_state, reward, done, _ = env.step(action)
# 更新网络并存储经验
# (在这里添加更新步骤,比如利用REINFORCE算法)
optimizer.zero_grad()
loss.backward()
optimizer.step()
total_reward += reward
state = next_state
阅读全文