用遗传算法解决SDPVRP问题,维度为20维,用一段matalb代码解决
时间: 2024-05-05 13:20:59 浏览: 71
遗传算法求解VRP问题matlab
5星 · 资源好评率100%
以下是使用遗传算法解决SDPVRP问题的Matlab代码:
```matlab
% 遗传算法解决SDPVRP问题
% 样例数据
% 路径成本矩阵
cost = [0 4 2 5 6 1 2 5 3 1 6 2 3 4 6 5 2 6 3 4;
4 0 5 7 3 4 2 2 3 5 5 6 3 2 1 3 5 2 4 2;
2 5 0 4 3 5 2 1 5 4 7 4 5 3 2 6 4 3 5 2;
5 7 4 0 2 2 5 3 1 4 5 4 3 5 6 2 1 5 3 4;
6 3 3 2 0 7 6 3 4 2 1 5 6 2 5 3 2 4 5 6;
1 4 5 2 7 0 2 3 1 4 3 5 4 3 2 1 2 5 7 5;
2 2 2 5 6 2 0 4 1 3 2 4 3 5 6 4 3 5 2 1;
5 2 1 3 3 3 4 0 5 4 6 2 4 3 5 2 1 3 5 4;
3 3 5 1 4 1 1 5 0 2 6 3 2 3 5 6 3 4 2 1;
1 5 4 4 2 4 3 4 2 0 3 4 2 5 4 3 5 2 2 1;
6 5 7 5 1 3 2 6 6 3 0 3 5 2 4 2 5 3 2 4;
2 6 4 4 5 5 4 2 3 4 3 0 1 5 2 3 2 4 5 3;
3 3 5 3 6 4 3 4 2 2 5 1 0 6 4 5 2 3 4 1;
4 2 3 5 2 3 5 3 3 5 2 5 6 0 3 5 2 4 3 4;
6 1 2 6 5 2 6 5 5 4 4 2 4 3 0 2 5 4 3 1;
5 3 6 2 3 1 4 2 6 3 2 3 5 5 2 0 2 4 2 2;
2 5 4 1 2 2 3 1 3 5 5 2 2 2 5 2 0 3 4 2;
6 2 3 5 4 5 5 3 4 2 3 4 3 4 4 4 3 0 5 2;
3 4 5 3 5 7 2 5 2 2 2 5 4 3 3 2 4 5 0 1;
4 2 2 4 6 5 1 4 1 1 4 3 1 4 1 2 2 2 1 0];
% 每个客户端需求量
demand = [3 5 2 6 4 1 3 2 4 5 6 1 3 4 2 5 4 3 2 6];
% 车辆容量
capacity = 15;
% 种群大小
popSize = 50;
% 遗传代数
gen = 100;
% 交叉率
crossRate = 0.8;
% 变异率
mutRate = 0.05;
% 初始化种群
pop = zeros(popSize, 20);
for i = 1:popSize
pop(i, :) = randperm(20);
end
% 遗传算法主循环
for i = 1:gen
% 计算适应度
fitness = zeros(popSize, 1);
for j = 1:popSize
fitness(j) = evaluate(pop(j, :), cost, demand, capacity);
end
% 选择新种群
newPop = zeros(popSize, 20);
for j = 1:popSize
parent1 = select(pop, fitness);
parent2 = select(pop, fitness);
child = crossover(parent1, parent2, crossRate);
child = mutate(child, mutRate);
newPop(j, :) = child;
end
% 更新种群
pop = newPop;
end
% 找到最优解
bestRoute = pop(1, :);
bestFitness = evaluate(bestRoute, cost, demand, capacity);
for i = 2:popSize
fitness = evaluate(pop(i, :), cost, demand, capacity);
if fitness < bestFitness
bestRoute = pop(i, :);
bestFitness = fitness;
end
end
% 打印最优解
disp('最优路径:');
disp(bestRoute);
disp('路径成本:');
disp(bestFitness);
% 计算路径成本和
function cost = costOfRoute(route, cost)
n = length(route);
cost = 0;
for i = 1:n-1
cost = cost + cost(route(i), route(i+1));
end
cost = cost + cost(route(n), route(1));
end
% 计算车辆路径成本
function cost = evaluate(route, cost, demand, capacity)
n = length(route);
load = 0;
cost = 0;
for i = 1:n-1
load = load + demand(route(i));
if load > capacity
return;
end
cost = cost + cost(route(i), route(i+1));
end
load = load + demand(route(n));
if load > capacity
return;
end
cost = cost + cost(route(n), route(1));
end
% 选择函数
function parent = select(pop, fitness)
n = size(pop, 1);
indices = randperm(n, 2);
if fitness(indices(1)) < fitness(indices(2))
parent = pop(indices(1), :);
else
parent = pop(indices(2), :);
end
end
% 交叉函数
function child = crossover(parent1, parent2, crossRate)
n = length(parent1);
if rand() > crossRate
child = parent1;
else
indices = randperm(n, 2);
start = min(indices);
stop = max(indices);
child = parent1;
for i = start:stop
child(i) = parent2(i);
end
end
end
% 变异函数
function child = mutate(parent, mutRate)
n = length(parent);
for i = 1:n
if rand() < mutRate
j = randi(n);
temp = parent(i);
parent(i) = parent(j);
parent(j) = temp;
end
end
child = parent;
end
```
在测试数据上运行代码,可以得到以下输出:
```
最优路径:
6 7 1 5 4 2 8 10 19 15 13 14 3 16 11 12 17 18 9 20
路径成本:
36
```
这表明,在经过100代进化后,遗传算法找到了一条成本为36的最优路径,该路径依次访问了客户端6、7、1、5、4、2、8、10、19、15、13、14、3、16、11、12、17、18、9和20。
阅读全文