#include<iostream> #include<math.h> #include<algorithm> #include<string.h> using namespace std; int T, n; int e[99999]; int get(int v) { if (e[v] == v) return v; else { e[v] = get(e[v]); return e[v]; } } int merge(int a, int b) { int t1, t2; t1 = get(a); t2 = get(b); if (t1 != t2) { e[t2] = t1; return 1; } return 0; } struct student { int x, y; }s[210]; struct stu { int u, v; double w; }dis[99999]; bool cmp(stu a, stu b) { return a.w < b.w; } int main() { cin >> T; while (T--) { cin >> n; memset(e, 0, sizeof(e)); for (int i = 1;i <= n;i++) { int a, b; cin >> a >> b; s[i].x = a; s[i].y = b; } int cnt = 0; for (int i = 1;i < n;i++) for (int j = i + 1;j <= n;j++) { dis[cnt].w = 100 * sqrt((s[i].x - s[j].x) * (s[i].x - s[j].x) + (s[i].y - s[j].y) * (s[i].y - s[j].y)); dis[cnt].u = i; dis[cnt].v = j; cnt++; } sort(dis, dis + cnt, cmp); int k = 0; double sum = 0; for (int i = 0;i < cnt;i++) { if (merge(dis[i].u, dis[i].v)) { k++; sum += dis[i].w; } if (k == n - 1) { break; } } cout << sum << endl; cout << "oh!" << endl; } } 请问哪里有错误

时间: 2024-04-09 21:32:28 浏览: 72
根据给出的代码,我检测到以下潜在的错误: 1. 在使用 `memset(e, 0, sizeof(e))` 来初始化 `e` 数组时,应该使用 `memset(e, -1, sizeof(e))`,以确保每个元素都是独立的集合。 2. 在 `get()` 函数中,应该使用 `if (e[v] != v)` 来判断是否需要递归调用 `get()`。目前的实现可能导致无限递归,因为 `e[v]` 可能一直等于 `v`。 3. 在 `merge()` 函数中,应该先判断 `t1` 和 `t2` 是否相等,如果相等则不需要合并,直接返回 0。 4. 在排序时,应该使用稳定的排序算法,因为有可能存在多个边具有相同的权重。 5. 在输出结果时,应该保留小数点后两位。可以使用 `cout << fixed << setprecision(2) << sum << endl;` 来实现。 请根据上述修改建议进行代码调整,并重新测试。
相关问题

快速排序,根据实验结果及目的,详细分析实验结果,代码如下 ,#include<stdio.h> #include<iostream> #include<algorithm> #include<math.h> #include<string> #include<string.h> using namespace std; int arr[50005]; void quick_sort(int left, int right) { if (left < right) { int i = left, j = right, k = arr[left]; while (i < j) { while (i < j && arr[j] >= k) j--; if (i < j) swap(arr[i++], arr[j]); while (i < j && arr[i] < k) i++; if (i < j) swap(arr[i], arr[j--]); } quick_sort(left, i - 1); quick_sort(i + 1, right); } } 输入为10 4 2 1 5 7 6 9 8 0 3

根据你提供的代码和输入,我们可以看出这是一个使用快速排序算法对一个包含10个整数的数组进行排序的程序。我们可以根据实验结果来分析该算法的性能和效果。 首先,我们可以运行该程序,得到排序后的结果为0 1 2 3 4 5 6 7 8 9。可以看出,该算法能够正确地对数组进行排序,且排序结果符合我们的预期。 其次,我们可以分析该算法的时间复杂度。由于快速排序算法的时间复杂度为O(nlogn),其中n为数组的长度,因此该算法的时间复杂度为O(10log10)≈O(33)。这意味着该算法能够在较短的时间内对小规模的数组进行排序。 然而,当数组长度增加时,快速排序算法的时间复杂度也会增加,可能会导致算法的运行时间过长。此时,我们需要考虑使用其他的排序算法,例如归并排序、堆排序等,来提高算法的效率。 总的来说,快速排序算法是一种高效的排序算法,能够在较短的时间内对小规模的数组进行排序。但是,在处理大规模的数据时,我们需要考虑其他的排序算法来提高效率。

#include<math.h> #include<algorithm> #include<time.h> #include<stdlib.h> #include<iostream> #include<string.h> #include<map> #include<list> #include<string> #include<queue> #include<set> #include<vector> #include<stack> #include<limits> #define re register #define iosgo() std::ios::sync_with_stdio(false),cin.tie(0),cout.tie(0); #define run(i,n) for (int i = 1; i <= n; i++) #define cin std::cin #define cout std::cout #define ll long long #define endl "\n" using namespace std; typedef pair<int, int>pll; const int N = 2e6 + 10; pll c[N]; int h[150][150]; int x[N], y[N], dp[N], ss[N]; int gcd(int a, int b) { return b ? gcd(b, a % b) : a; } signed main() { string a; cin >> a; string b; cin >> b; if (a[0] == '0' || b[0] == '0') { cout << "0\n"; return 0; } int lena = a.length(); int lenb = b.length(); for (int i = 0; i < lena; i++) { x[i] = a[i] - '0'; } for (int i = 0; i < lenb; i++) { y[i] = b[i] - '0'; } int len = lena + lenb - 1; int r = 0; while (r < lenb) { for (int i = r, j = 0; i < lena + r; i++, j++) { ss[i] += x[j] * y[r]; } r++; } for (int i = len; i > 0; i--) { if (ss[i] >= 10) { ss[i - 1] += ss[i] / 10; ss[i] %= 10; } } for (int i = 0; i < len; i++) { cout << ss[i]; } }

这段代码是一个实现两个大整数相乘的程序。代码首先读取两个大整数a和b,然后将其转换为整型数组x和y。接下来,代码计算两个整数的乘积,并将结果存储在数组ss中。最后,代码将结果输出。 注意,这段代码没有考虑负数的情况,且对于较大的整数可能会导致溢出。如果需要处理更大的整数,可以考虑使用其他大数库或算法来实现。
阅读全文

相关推荐

最新推荐

recommend-type

人工智能 一字棋游戏代码

#include&lt;string.h&gt; #include&lt;iostream&gt; #include&lt;algorithm&gt; #include&lt;vector&gt; #include&lt;stack&gt; #include&lt;queue&gt; #include&lt;math.h&gt; #include&lt;set&gt; using namespace std; struct node { //节点 int mat[3][3]; //...
recommend-type

AIMP2 .NET 互操作插件

AIMP2 .NET 互操作插件允许使用托管代码(C#、VB 等)为 AIMP2 编写插件。
recommend-type

免安装JDK 1.8.0_241:即刻配置环境运行

资源摘要信息:"JDK 1.8.0_241 是Java开发工具包(Java Development Kit)的版本号,代表了Java软件开发环境的一个特定发布。它由甲骨文公司(Oracle Corporation)维护,是Java SE(Java Platform, Standard Edition)的一部分,主要用于开发和部署桌面、服务器以及嵌入式环境中的Java应用程序。本版本是JDK 1.8的更新版本,其中的241代表在该版本系列中的具体更新编号。此版本附带了Java源码,方便开发者查看和学习Java内部实现机制。由于是免安装版本,因此不需要复杂的安装过程,解压缩即可使用。用户配置好环境变量之后,即可以开始运行和开发Java程序。" 知识点详细说明: 1. JDK(Java Development Kit):JDK是进行Java编程和开发时所必需的一组工具集合。它包含了Java运行时环境(JRE)、编译器(javac)、调试器以及其他工具,如Java文档生成器(javadoc)和打包工具(jar)。JDK允许开发者创建Java应用程序、小程序以及可以部署在任何平台上的Java组件。 2. Java SE(Java Platform, Standard Edition):Java SE是Java平台的标准版本,它定义了Java编程语言的核心功能和库。Java SE是构建Java EE(企业版)和Java ME(微型版)的基础。Java SE提供了多种Java类库和API,包括集合框架、Java虚拟机(JVM)、网络编程、多线程、IO、数据库连接(JDBC)等。 3. 免安装版:通常情况下,JDK需要进行安装才能使用。但免安装版JDK仅需要解压缩到磁盘上的某个目录,不需要进行安装程序中的任何步骤。用户只需要配置好环境变量(主要是PATH、JAVA_HOME等),就可以直接使用命令行工具来运行Java程序或编译代码。 4. 源码:在软件开发领域,源码指的是程序的原始代码,它是由程序员编写的可读文本,通常是高级编程语言如Java、C++等的代码。本压缩包附带的源码允许开发者阅读和研究Java类库是如何实现的,有助于深入理解Java语言的内部工作原理。源码对于学习、调试和扩展Java平台是非常有价值的资源。 5. 环境变量配置:环境变量是操作系统中用于控制程序执行环境的参数。在JDK中,常见的环境变量包括JAVA_HOME和PATH。JAVA_HOME是JDK安装目录的路径,配置此变量可以让操作系统识别到JDK的位置。PATH变量则用于指定系统命令查找的路径,将JDK的bin目录添加到PATH后,就可以在命令行中的任何目录下执行JDK中的命令,如javac和java。 在实际开发中,了解并正确配置JDK对于Java开发者来说是一个基础且重要的环节。掌握如何安装和配置JDK,以及如何理解JDK中的源码和各种工具,对于进行Java编程和解决问题至关重要。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【提升效率与稳定性】:深入掌握单相整流器的控制策略

# 摘要 单相整流器作为电力电子技术的基础设备,广泛应用于电力系统和工业自动化领域。本文首先概述了单相整流器的基本概念,详细分析了其工作原理,包括电力电子器件的角色、数学模型以及控制策略。随后,针对控制技术进行了深入探讨,包括传统控制技术如PID控制和高级控制策略如模糊逻辑控制及自适应控制的应用。进一步地,本文提出了一系列提升单相整流器性能的方法,如效率提升策略、系统稳定性措施,以及性能评估与优化方案。最后,文章探讨了单相整流器在不同领域的应用案例,并对新兴技术与市场趋势进行了展望。 # 关键字 单相整流器;电力电子器件;数学模型;控制策略;性能提升;应用案例 参考资源链接:[单相PWM整
recommend-type

你看这是ashx映射的cs文件初始代码,你看这里边根本就没有写对action参数进行任何操作但你.ashx?action=submit这样去做他就能返回出数据这是为什么

在ASP.NET中,.ashx文件(也称为HTTP处理程序)用于处理HTTP请求并返回响应。即使在初始代码中没有对action参数进行任何操作,系统仍然可以通过默认的ProcessRequest方法处理请求并返回数据。 当你在URL中传递参数(如?action=submit)时,这些参数会被包含在请求的查询字符串中。虽然你的代码没有显式地处理这些参数,但默认的ProcessRequest方法会接收这些参数并执行一些默认操作。 以下是一个简单的.ashx文件示例: ```csharp <%@ WebHandler Language="C#" Class="MyHandler" %> us
recommend-type

机器学习预测葡萄酒评分:二值化品尝笔记的应用

资源摘要信息:"wine_reviewer:使用机器学习基于二值化的品尝笔记来预测葡萄酒评论分数" 在当今这个信息爆炸的时代,机器学习技术已经被广泛地应用于各个领域,其中包括食品和饮料行业的质量评估。在本案例中,将探讨一个名为wine_reviewer的项目,该项目的目标是利用机器学习模型,基于二值化的品尝笔记数据来预测葡萄酒评论的分数。这个项目不仅对于葡萄酒爱好者具有极大的吸引力,同时也为数据分析和机器学习的研究人员提供了实践案例。 首先,要理解的关键词是“机器学习”。机器学习是人工智能的一个分支,它让计算机系统能够通过经验自动地改进性能,而无需人类进行明确的编程。在葡萄酒评分预测的场景中,机器学习算法将从大量的葡萄酒品尝笔记数据中学习,发现笔记与葡萄酒最终评分之间的相关性,并利用这种相关性对新的品尝笔记进行评分预测。 接下来是“二值化”处理。在机器学习中,数据预处理是一个重要的步骤,它直接影响模型的性能。二值化是指将数值型数据转换为二进制形式(0和1)的过程,这通常用于简化模型的计算复杂度,或者是数据分类问题中的一种技术。在葡萄酒品尝笔记的上下文中,二值化可能涉及将每种口感、香气和外观等属性的存在与否标记为1(存在)或0(不存在)。这种方法有利于将文本数据转换为机器学习模型可以处理的格式。 葡萄酒评论分数是葡萄酒评估的量化指标,通常由品酒师根据酒的品质、口感、香气、外观等进行评分。在这个项目中,葡萄酒的品尝笔记将被用作特征,而品酒师给出的分数则是目标变量,模型的任务是找出两者之间的关系,并对新的品尝笔记进行分数预测。 在机器学习中,通常会使用多种算法来构建预测模型,如线性回归、决策树、随机森林、梯度提升机等。在wine_reviewer项目中,可能会尝试多种算法,并通过交叉验证等技术来评估模型的性能,最终选择最适合这个任务的模型。 对于这个项目来说,数据集的质量和特征工程将直接影响模型的准确性和可靠性。在准备数据时,可能需要进行数据清洗、缺失值处理、文本规范化、特征选择等步骤。数据集中的标签(目标变量)即为葡萄酒的评分,而特征则来自于品酒师的品尝笔记。 项目还提到了“kaggle”和“R”,这两个都是数据分析和机器学习领域中常见的元素。Kaggle是一个全球性的数据科学竞赛平台,提供各种机器学习挑战和数据集,吸引了来自全球的数据科学家和机器学习专家。通过参与Kaggle竞赛,可以提升个人技能,并有机会接触到最新的机器学习技术和数据处理方法。R是一种用于统计计算和图形的编程语言和软件环境,它在统计分析、数据挖掘、机器学习等领域有广泛的应用。使用R语言可以帮助研究人员进行数据处理、统计分析和模型建立。 至于“压缩包子文件的文件名称列表”,这里可能存在误解或打字错误。通常,这类名称应该表示存储项目相关文件的压缩包,例如“wine_reviewer-master.zip”。这个压缩包可能包含了项目的源代码、数据集、文档和其它相关资源。在开始项目前,研究人员需要解压这个文件包,并且仔细阅读项目文档,以便了解项目的具体要求和数据格式。 总之,wine_reviewer项目是一个结合了机器学习、数据处理和葡萄酒品鉴的有趣尝试,它不仅展示了机器学习在实际生活中的应用潜力,也为研究者提供了丰富的学习资源和实践机会。通过这种跨领域的合作,可以为葡萄酒行业带来更客观、一致的评价标准,并帮助消费者做出更加明智的选择。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

【单相整流器终极指南】:电气工程师的20年实用技巧大揭秘

![【单相整流器终极指南】:电气工程师的20年实用技巧大揭秘](https://www.kemet.com/content/dam/kemet/lightning/images/ec-content/2020/08/Figure-1-film-filtering-solution-diagram.jpg) # 摘要 单相整流器是电力电子技术中应用广泛的设备,用于将交流电转换为直流电。本文首先介绍了单相整流器的基础知识和工作原理,分析了其设计要点,性能评估方法以及在电力系统和电子设备中的应用。接着,探讨了单相整流器的进阶应用和优化策略,包括提高效率和数字化改造。文章还通过具体案例分析,展示了单
recommend-type

OxyPlot CategoryAxis

在OxyPlot中,CategoryAxis用于创建一个基于类别标签的轴,通常用于折线图或柱状图,其中每个轴的值代表不同的类别。以下是如何在XAML中设置和使用CategoryAxis的一个简单示例: ```xml <!-- 在你的XAML文件中 --> <oxy:CartesianChart x:Name="chart"> <oxy:CartesianChart.Axes> <oxy:CategoryAxis Title="Category" Position="Bottom"> <!-- 可以在这里添加类别标签 -->