for grasp_point_array in local_max: grasp_point = tuple(grasp_point_array) grasp_angle = ang_img[grasp_point] g = Grasp(grasp_point, grasp_angle) if width_img is not None: g.length = width_img[grasp_point] g.width = g.length/2 grasps.append(g)
时间: 2024-02-14 19:24:42 浏览: 87
这个循环用于将局部最大值转换为实际的抓取点,并创建 `Grasp` 对象。对于每个抓取点,该代码将其转换为元组,并使用 `ang_img` 获取抓取点的角度。然后,使用 `Grasp` 构造函数创建一个新的 `Grasp` 对象,并将其添加到 `grasps` 列表中。如果提供了 Width 图像,则还会将其用于设置 `Grasp` 对象的 length 和 width 的属性。最后,该函数返回 `grasps` 列表。
相关问题
def detect_grasps(q_img, ang_img, width_img=None, no_grasps=1): """ Detect grasps in a GG-CNN output. :param q_img: Q image network output :param ang_img: Angle image network output :param width_img: (optional) Width image network output :param no_grasps: Max number of grasps to return :return: list of Grasps """ local_max = peak_local_max(q_img, min_distance=20, threshold_abs=0.2, num_peaks=no_grasps) grasps = [] for grasp_point_array in local_max: grasp_point = tuple(grasp_point_array) grasp_angle = ang_img[grasp_point] g = Grasp(grasp_point, grasp_angle) if width_img is not None: g.length = width_img[grasp_point] g.width = g.length/2 grasps.append(g) return grasps
这段代码是用来在机器人视觉中检测物体的抓取点的。它接收神经网络输出的 Q 图像和 Angle 图像,以及可选的 Width 图像,然后使用 peak_local_max 函数检测图像中的局部最大值,作为抓取点。然后,对于每个抓取点,该代码创建一个 `Grasp` 对象,将其添加到 `grasps` 列表中,并返回该列表。如果提供了 Width 图像,则还会为每个 `Grasp` 对象设置 length 和 width 的属性。
请将下面的halcon代码转写为python代码:<?xml version="1.0" encoding="UTF-8"?> <hdevelop file_version="1.2" halcon_version="20.11.0.0"> <procedure name="main"> <interface/> <body> <c as_id="image_acquisition" as_name="Image Acquisition 01" as_grp="[1,1]" as_ord="1">* Image Acquisition 01: Code generated by Image Acquisition 01</c> <l as_id="image_acquisition" as_name="Image Acquisition 01" as_grp="[1,2]" as_ord="1">list_files ('G:/Grasp-Dataset/brick-text', ['files','follow_links'], ImageFiles)</l> <l as_id="image_acquisition" as_name="Image Acquisition 01" as_grp="[1,3]" as_ord="1">tuple_regexp_select (ImageFiles, ['\\.(tif|tiff|gif|bmp|jpg|jpeg|jp2|png|pcx|pgm|ppm|pbm|xwd|ima|hobj)$','ignore_case'], ImageFiles)</l> <l as_id="image_acquisition" as_name="Image Acquisition 01" as_grp="[2,2]" as_ord="1">for Index := 0 to |ImageFiles| - 1 by 1</l> <l as_id="image_acquisition" as_name="Image Acquisition 01" as_grp="[2,3]" as_ord="1"> read_image (Image, ImageFiles[Index])</l> <c as_id="image_acquisition" as_name="Image Acquisition 01" as_grp="[2,4]" as_ord="1"> * Image Acquisition 01: Do something</c> <l> ImgPath:=ImageFiles[Index]</l> <c> * 分割文件名</c> <l> parse_filename(ImageFiles[Index], BaseName, Extension, Directory)</l> <l> minvalue:=20</l> <l> maxvalue:=60</l> <l> Amp:=minvalue+rand(1)*(maxvalue-minvalue)</l> <l> add_noise_white (Image, ImageNoise, Amp)</l> <l> write_image (ImageNoise, 'jpeg', 0, Directory+BaseName+'noise')</l> <c> </c> <l as_id="image_acquisition" as_name="Image Acquisition 01" as_grp="[3,1]" as_ord="1">endfor</l> </body> <docu id="main"> <parameters/> </docu> </procedure> </hdevelop>
下面是将Halcon代码转换为Python代码的结果:
```python
import os
import random
image_files = []
image_folder = 'G:/Grasp-Dataset/brick-text'
for root, dirs, files in os.walk(image_folder):
for file in files:
if file.lower().endswith(('.tif', '.tiff', '.gif', '.bmp', '.jpg', '.jpeg', '.jp2', '.png', '.pcx', '.pgm', '.ppm', '.pbm', '.xwd', '.ima', '.hobj')):
image_files.append(os.path.join(root, file))
for image_file in image_files:
image = read_image(image_file)
base_name, extension = os.path.splitext(os.path.basename(image_file))
directory = os.path.dirname(image_file)
min_value = 20
max_value = 60
amp = min_value + random.random() * (max_value - min_value)
image_noise = add_noise_white(image, 'uniform', amp)
write_image(image_noise, 'jpeg', 0, os.path.join(directory, base_name + 'noise'))
```
请注意,上述代码中的`read_image`、`add_noise_white`和`write_image`函数需要根据你使用的图像处理库进行相应的替换。此外,还需要导入适当的库以支持所使用的函数和操作。
阅读全文