下面这段代码是否有错误,或者不是最新格式:for i in range(len(df_stock)): # 判断是否买入 if df_stock.loc[i, 'buy_signal'] == 1 and bought == 0: buy_price = df_stock.loc[i, 'close'] # 以当天收盘价买入 df_stock.loc[i, 'bought'] = 1 # 标记已购买 bought = 1
时间: 2024-04-09 21:33:27 浏览: 93
这段代码没有明显的错误,但是可以进行一些改进。以下是改进的建议:
```python
for i in range(len(df_stock)):
# 判断是否买入
if df_stock.at[i, 'buy_signal'] == 1 and bought == 0:
buy_price = df_stock.at[i, 'close'] # 以当天收盘价买入
df_stock.at[i, 'bought'] = 1 # 标记已购买
bought = 1
```
改进的地方包括:
- 使用`at`方法替代`loc`方法,因为`at`方法更适合单个元素的访问,可以提高代码的执行效率。
- 将索引操作`[]`改为`at`方法,以避免返回Series对象而直接返回标量值。
请注意,这只是对代码进行了一些细微的改进,如果代码在其他方面有问题,还需要根据具体情况进行修改。
相关问题
import pandas as pd window_size = 4 # 定义窗口大小 df = pd.read_csv('stock_data.csv') if len(df) >= window_size and window_size > 0: df['four_days_increase'] = df['close'].rolling(window=window_size).apply(lambda x: all(x[i] < x[i+1] for i in range(window_size-1))) * 1 if len(df) >= window_size-1 and window_size > 0: df['three_days_decrease'] = df['close'].rolling(window=window_size-1).apply(lambda x: all(x[i] > x[i+1] for i in range(window_size-2))) * 1修改此代码,避免出现0 is not in range
如果你仍然遇到 `0 is not in range` 的错误,可以尝试以下两种方法:
1. 检查数据中是否有缺失值。如果数据中有缺失值,可能会导致rolling函数中的窗口大小小于指定的窗口大小,从而导致错误。你可以使用 `df.isnull().sum()` 来检查数据中是否有缺失值。
2. 将lambda函数中的 `range(window_size-1)` 和 `range(window_size-2)` 改为 `range(window_size)` 和 `range(window_size-1)`,这样可以确保范围中包含数字0。
修改后的代码如下:
```
import pandas as pd
window_size = 4 # 定义窗口大小
df = pd.read_csv('stock_data.csv')
if len(df) >= window_size and window_size > 0:
df['four_days_increase'] = df['close'].rolling(window=window_size).apply(lambda x: all(x[i] < x[i+1] for i in range(window_size))) * 1
if len(df) >= window_size-1 and window_size > 0:
df['three_days_decrease'] = df['close'].rolling(window=window_size-1).apply(lambda x: all(x[i] > x[i+1] for i in range(window_size-1))) * 1
```
注意,这里仅仅是对错误的解决方案,如果是数据问题,需要对数据进行处理。
import pandas as pd df = pd.read_csv('stock_data.csv') df['four_days_increase'] = df['close'].rolling(window=4).apply(lambda x: all(x[i] < x[i+1] for i in range(3))) * 1 df['three_days_decrease'] = df['close'].rolling(window=3).apply(lambda x: all(x[i] > x[i+1] for i in range(2))) * 1 capital = 1000000 max_stock_per_day = 10 max_stock_value = 100000 start_date = '2020-01-01' end_date = '2023-01-01' df = df[(df['date'] >= start_date) & (df['date'] < end_date)] df = df.reset_index(drop=True) hold_stock = [] for i, row in df.iterrows(): if len(hold_stock) > 0: sell_stock = [] for stock in hold_stock: if i - stock['buy_day'] >= 3: capital += stock['buy_price'] * stock['buy_qty'] * (1 - 0.002) sell_stock.append(stock) hold_stock = [stock for stock in hold_stock if stock not in sell_stock] df_today = df.loc[i:i+3] if i + 3 >= len(df): break if all(df_today['four_days_increase']) and all(df_today['three_days_decrease'].iloc[1:]): available_capital = capital available_stock = max_stock_per_day available_value = max_stock_value for j, stock_row in df_today.iterrows(): if available_capital > 0 and available_stock > 0 and available_value > 0: buy_qty = min(int(available_capital / (stock_row['close'] * 1.002)), available_stock, int(available_value / (stock_row['close'] * 1.002))) if buy_qty > 0: hold_stock.append({'buy_day': i, 'buy_price': stock_row['close'], 'buy_qty': buy_qty}) available_capital -= stock_row['close'] * buy_qty * 1.002 available_stock -= 1 available_value -= stock_row['close'] * buy_qty * 1.002 print('Final capital:', capital)让上述代码在jupyter里不报错
这段代码的错误可能是由于缺少依赖库或文件。请确保您已经安装了pandas库并且已经将stock_data.csv文件放在正确的位置。另外,您可能需要在Jupyter Notebook中使用`%matplotlib inline`来确保图表正确显示。以下是可能的修改:
```
import pandas as pd
%matplotlib inline
df = pd.read_csv('stock_data.csv')
df['four_days_increase'] = df['close'].rolling(window=4).apply(lambda x: all(x[i] < x[i+1] for i in range(3))) * 1
df['three_days_decrease'] = df['close'].rolling(window=3).apply(lambda x: all(x[i] > x[i+1] for i in range(2))) * 1
capital = 1000000
max_stock_per_day = 10
max_stock_value = 100000
start_date = '2020-01-01'
end_date = '2023-01-01'
df = df[(df['date'] >= start_date) & (df['date'] < end_date)]
df = df.reset_index(drop=True)
hold_stock = []
for i, row in df.iterrows():
if len(hold_stock) > 0:
sell_stock = []
for stock in hold_stock:
if i - stock['buy_day'] >= 3:
capital += stock['buy_price'] * stock['buy_qty'] * (1 - 0.002)
sell_stock.append(stock)
hold_stock = [stock for stock in hold_stock if stock not in sell_stock]
df_today = df.loc[i:i+3]
if i + 3 >= len(df):
break
if all(df_today['four_days_increase']) and all(df_today['three_days_decrease'].iloc[1:]):
available_capital = capital
available_stock = max_stock_per_day
available_value = max_stock_value
for j, stock_row in df_today.iterrows():
if available_capital > 0 and available_stock > 0 and available_value > 0:
buy_qty = min(int(available_capital / (stock_row['close'] * 1.002)), available_stock, int(available_value / (stock_row['close'] * 1.002)))
if buy_qty > 0:
hold_stock.append({'buy_day': i, 'buy_price': stock_row['close'], 'buy_qty': buy_qty})
available_capital -= stock_row['close'] * buy_qty * 1.002
available_stock -= 1
available_value -= stock_row['close'] * buy_qty * 1.002
print('Final capital:', capital)
```
阅读全文