accuracy of the network on the 194 test images:50%

时间: 2024-03-11 12:46:33 浏览: 16
这段输出表示在测试集上,模型的准确率为 50%。测试集一般用于评估模型的泛化能力,即模型在未见过的数据上的表现。模型的准确率越高,说明模型的泛化能力越强。需要注意的是,测试集的数据量应该足够大,以避免对模型准确率的估计产生误差。同时,在训练过程中,还需要关注模型在训练集和验证集上的表现,以避免出现过拟合等问题。
相关问题

if args.eval: test_stats = evaluate(data_loader_val, model, device) print(f"Accuracy of the network on the {len(dataset_val)} test images: {test_stats['acc1']:.1f}%") return print("Start training")

这段代码主要实现了在测试模式下的模型评估和在训练模式下的输出提示。具体来说: - `if args.eval:` 判断是否使用测试模式。 - `test_stats = evaluate(data_loader_val, model, device)` 在测试模式下,调用 `evaluate` 函数计算模型在验证集上的性能指标,其中 `data_loader_val` 是验证集数据加载器,`model` 是待评估的模型,`device` 是模型运行的设备。 - `print(f"Accuracy of the network on the {len(dataset_val)} test images: {test_stats['acc1']:.1f}%")` 打印模型在测试集上的准确率,其中 `len(dataset_val)` 表示测试集的图片数量,`test_stats['acc1']` 表示模型在测试集上的 top-1 准确率,`:.1f` 表示保留一位小数。 - `return` 退出程序,因为在测试模式下只需要评估模型性能,不需要进行训练。 - `print("Start training")` 在训练模式下,输出训练开始的提示信息。

if epoch % args.print_epoch == 0: test_stats = evaluate(data_loader_val, model, device) print(f"Accuracy of the network on the {len(dataset_val)} test images: {test_stats['acc1']:.1f}%") max_accuracy = max(max_accuracy, test_stats["acc1"]) print(f'Max accuracy: {max_accuracy:.2f}%') train_stats = evaluate(data_loader_train, model, device) print(f"Accuracy of the network on the {len(dataset_train)} train images: {train_stats['acc1']:.1f}%") max_accuracy = max(max_accuracy, train_stats["acc1"]) print(f'train Max accuracy: {max_accuracy:.2f}%')

可以在每次训练过程中加入以下代码来记录并输出模型在训练集上的准确率,并更新最高训练集准确率: ``` if epoch % args.print_epoch == 0: test_stats = evaluate(data_loader_val, model, device) print(f"Accuracy of the network on the {len(dataset_val)} test images: {test_stats['acc1']:.1f}%") max_accuracy = max(max_accuracy, test_stats["acc1"]) print(f'Max accuracy: {max_accuracy:.2f}%') train_stats = evaluate(data_loader_train, model, device) print(f"Accuracy of the network on the {len(dataset_train)} train images: {train_stats['acc1']:.1f}%") max_accuracy = max(max_accuracy, train_stats["acc1"]) print(f'train Max accuracy: {max_accuracy:.2f}%') ``` 其中,`train_stats`记录了当前训练过程中模型在训练集上的准确率,每次训练完成后,判断当前的训练集准确率是否超过了最高训练集准确率,如果超过了,则更新最高训练集准确率并输出。

相关推荐

import torch import torch.nn as nn import torch.optim as optim import numpy as np from torch.autograd import Variable from torchvision.datasets import ImageFolder from torchvision.transforms import transforms from torch.utils.data import DataLoader # 定义超参数 num_epochs = 10 batch_size = 32 learning_rate = 0.001 # 定义数据转换方式 transform = transforms.Compose([ transforms.Resize((32, 32)), transforms.ToTensor(), transforms.Normalize(mean=[0.5], std=[0.5]) ]) # 加载数据集 train_dataset = ImageFolder(root='./ChineseStyle/train/', transform=transform) train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True) test_dataset = ImageFolder(root='./ChineseStyle/test/', transform=transform) test_loader = DataLoader(test_dataset, batch_size=batch_size, shuffle=True) # 定义卷积神经网络结构 class Net(nn.Module): def init(self): super(Net, self).init() self.conv1 = nn.Conv2d(in_channels=3, out_channels=6, kernel_size=5, stride=1, padding=2) self.pool = nn.MaxPool2d(kernel_size=2, stride=2) self.conv2 = nn.Conv2d(in_channels=6, out_channels=32, kernel_size=5, stride=1, padding=2) self.fc1 = nn.Linear(in_features=32 * 8 * 8, out_features=128) self.fc2 = nn.Linear(in_features=128, out_features=15) def forward(self, x): x = self.pool(torch.relu(self.conv1(x))) x = self.pool(torch.relu(self.conv2(x))) x = x.view(-1, 32 * 8 * 8) x = torch.relu(self.fc1(x)) x = self.fc2(x) return x # 实例化卷积神经网络 net = Net() # 定义损失函数和优化器 criterion = nn.CrossEntropyLoss() optimizer = optim.Adam(net.parameters(), lr=learning_rate) # 训练模型 for epoch in range(num_epochs): for i, (images, labels) in enumerate(train_loader): # 将输入和标签转换为变量 images = Variable(images) labels = Variable(labels) # 将梯度清零 optimizer.zero_grad() # 向前传递 outputs = net(images) # 计算损失函数 loss = criterion(outputs, labels) # 反向传播和优化 loss.backward() optimizer.step() # 打印统计信息 if (i + 1) % 100 == 0: print('Epoch [%d/%d], Step [%d/%d], Loss: %.4f' % (epoch + 1, num_epochs, i + 1, len(train_dataset) // batch_size, loss.item())) # 测试模型 correct = 0 total = 0 for images, labels in test_loader: # 向前传递 outputs = net(Variable(images)) # 获取预测结果 _, predicted = torch.max(outputs.data, 1) # 更新统计信息 total += labels.size(0) correct += (predicted == labels).sum() # 计算准确率 print('Accuracy of the network on the test images: %d %%' % (100 * correct / total))有没有测试到测试集

详细解释代码import torch import torch.nn as nn import torch.optim as optim import torchvision import torchvision.transforms as transforms from torch.utils.data import DataLoader # 图像预处理 transform = transforms.Compose( [transforms.ToTensor(), transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))]) # 加载数据集 trainset = torchvision.datasets.CIFAR10(root='./data', train=True, download=True, transform=transform) trainloader = DataLoader(trainset, batch_size=128, shuffle=True, num_workers=0) testset = torchvision.datasets.CIFAR10(root='./data', train=False, download=True, transform=transform) testloader = DataLoader(testset, batch_size=128, shuffle=False, num_workers=0) # 构建模型 class RNNModel(nn.Module): def init(self): super(RNNModel, self).init() self.rnn = nn.RNN(input_size=3072, hidden_size=512, num_layers=2, batch_first=True) self.fc = nn.Linear(512, 10) def forward(self, x): # 将输入数据reshape成(batch_size, seq_len, feature_dim) x = x.view(-1, 3072, 1).transpose(1, 2) x, _ = self.rnn(x) x = x[:, -1, :] x = self.fc(x) return x net = RNNModel() # 定义损失函数和优化器 criterion = nn.CrossEntropyLoss() optimizer = optim.Adam(net.parameters(), lr=0.001) # 训练模型 loss_list = [] acc_list = [] for epoch in range(30): # 多批次循环 running_loss = 0.0 correct = 0 total = 0 for i, data in enumerate(trainloader, 0): # 获取输入 inputs, labels = data # 梯度清零 optimizer.zero_grad() # 前向传播,反向传播,优化 outputs = net(inputs) loss = criterion(outputs, labels) loss.backward() optimizer.step() # 打印统计信息 running_loss += loss.item() _, predicted = torch.max(outputs.data, 1) total += labels.size(0) correct += (predicted == labels).sum().item() acc = 100 * correct / total acc_list.append(acc) loss_list.append(running_loss / len(trainloader)) print('[%d] loss: %.3f, acc: %.3f' % (epoch + 1, running_loss / len(trainloader), acc)) print('Finished Training') torch.save(net.state_dict(), 'rnn1.pt') # 绘制loss变化曲线和准确率变化曲线 import matplotlib.pyplot as plt fig, axs = plt.subplots(2, 1, figsize=(10, 10)) axs[0].plot(loss_list) axs[0].set_title("Training Loss") axs[0].set_xlabel("Epoch") axs[0].set_ylabel("Loss") axs[1].plot(acc_list) axs[1].set_title("Training Accuracy") axs[1].set_xlabel("Epoch") axs[1].set_ylabel("Accuracy") plt.show() # 测试模型 correct = 0 total = 0 with torch.no_grad(): for data in testloader: images, labels = data outputs = net(images) _, predicted = torch.max(outputs.data, 1) total += labels.size(0) correct += (predicted == labels).sum().item() print('Accuracy of the network on the 10000 test images: %d %%' % (100 * correct / total))

import idx2numpy import numpy as np from functions import * from two_layer_network import * #导入训练集和训练集对应的标签并将其初始化 X_train,T_train=idx2numpy.convert_from_file('emnist/emnist-letters-train-images-idx3-ubyte'),idx2numpy.convert_from_file('emnist/emnist-letters-train-labels-idx1-ubyte') X_train,T_train=X_train.copy(),T_train.copy() X_train=X_train.reshape((X_train.shape[0],-1)) T_train=T_train-1 T_train=np.eye(26)[T_train] #导入测试集和测试集对应的标签标签并将其初始化 X_test,T_test=idx2numpy.convert_from_file('emnist/emnist-letters-test-images-idx3-ubyte'),idx2numpy.convert_from_file('emnist/emnist-letters-test-labels-idx1-ubyte') X_test,T_test=X_test.copy(),T_test.copy() X_test=X_test.reshape((X_test.shape[0],-1)) T_test=T_test-1 T_test=np.eye(26)[T_test] network=TwoLayerNet(input_size=784,hidden_size=45,output_size=26) train_size=X_train.shape[0] batch_size=100 iters_num=100000 learning_rate=0.01 train_loss_list=[] train_acc_list=[] test_acc_list=[] iter_per_epoch=max(train_size/batch_size,1) for i in range(iters_num): batch_mask=np.random.choice(train_size,batch_size) X_batch=X_train[batch_mask] T_batch=T_train[batch_mask] #从数据集里抽取batch_size笔数据 #grad=network.numerical_gradient(X_batch,T_batch)(跑不出来,卡在None None) grad=network.gradient(X_batch,T_batch) #计算梯度 for key in ('W1','b1','W2','b2') : network.params[key]-=learning_rate*grad[key] #误差反向传播法调整参数 loss=network.loss(X_batch,T_batch) train_loss_list.append(loss) #记录学习过程 if i % iter_per_epoch==0: train_acc=network.accuracy(X_train,T_train) test_acc=network.accuracy(X_test,T_test) train_acc_list.append(train_acc) test_acc_list.append(test_acc) print(train_acc,test_acc) #调整学习率 if i > 0 and i % 1000 == 0 and i<3000: learning_rate *= 0.1 print("learning rate reduced to " + str(learning_rate)) print(network.params) print(train_acc_list[-1],test_acc_list[-1])如果我想存储参数,该怎么做

最新推荐

recommend-type

node-v0.10.13-sunos-x86.tar.gz

Node.js,简称Node,是一个开源且跨平台的JavaScript运行时环境,它允许在浏览器外运行JavaScript代码。Node.js于2009年由Ryan Dahl创立,旨在创建高性能的Web服务器和网络应用程序。它基于Google Chrome的V8 JavaScript引擎,可以在Windows、Linux、Unix、Mac OS X等操作系统上运行。 Node.js的特点之一是事件驱动和非阻塞I/O模型,这使得它非常适合处理大量并发连接,从而在构建实时应用程序如在线游戏、聊天应用以及实时通讯服务时表现卓越。此外,Node.js使用了模块化的架构,通过npm(Node package manager,Node包管理器),社区成员可以共享和复用代码,极大地促进了Node.js生态系统的发展和扩张。 Node.js不仅用于服务器端开发。随着技术的发展,它也被用于构建工具链、开发桌面应用程序、物联网设备等。Node.js能够处理文件系统、操作数据库、处理网络请求等,因此,开发者可以用JavaScript编写全栈应用程序,这一点大大提高了开发效率和便捷性。 在实践中,许多大型企业和组织已经采用Node.js作为其Web应用程序的开发平台,如Netflix、PayPal和Walmart等。它们利用Node.js提高了应用性能,简化了开发流程,并且能更快地响应市场需求。
recommend-type

课设毕设基于SSM的高校二手交易平台-LW+PPT+源码可运行.zip

课设毕设基于SSM的高校二手交易平台--LW+PPT+源码可运行
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

实现实时数据湖架构:Kafka与Hive集成

![实现实时数据湖架构:Kafka与Hive集成](https://img-blog.csdnimg.cn/img_convert/10eb2e6972b3b6086286fc64c0b3ee41.jpeg) # 1. 实时数据湖架构概述** 实时数据湖是一种现代数据管理架构,它允许企业以低延迟的方式收集、存储和处理大量数据。与传统数据仓库不同,实时数据湖不依赖于预先定义的模式,而是采用灵活的架构,可以处理各种数据类型和格式。这种架构为企业提供了以下优势: - **实时洞察:**实时数据湖允许企业访问最新的数据,从而做出更明智的决策。 - **数据民主化:**实时数据湖使各种利益相关者都可
recommend-type

SPDK_NVMF_DISCOVERY_NQN是什么 有什么作用

SPDK_NVMF_DISCOVERY_NQN 是 SPDK (Storage Performance Development Kit) 中用于查询 NVMf (Non-Volatile Memory express over Fabrics) 存储设备名称的协议。NVMf 是一种基于网络的存储协议,可用于连接远程非易失性内存存储器。 SPDK_NVMF_DISCOVERY_NQN 的作用是让存储应用程序能够通过 SPDK 查询 NVMf 存储设备的名称,以便能够访问这些存储设备。通过查询 NVMf 存储设备名称,存储应用程序可以获取必要的信息,例如存储设备的IP地址、端口号、名称等,以便能
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

实现实时监控告警系统:Kafka与Grafana整合

![实现实时监控告警系统:Kafka与Grafana整合](https://imgconvert.csdnimg.cn/aHR0cHM6Ly9tbWJpei5xcGljLmNuL21tYml6X2pwZy9BVldpY3ladXVDbEZpY1pLWmw2bUVaWXFUcEdLT1VDdkxRSmQxZXB5R1lxaWNlUjA2c0hFek5Qc3FyRktudFF1VDMxQVl3QTRXV2lhSWFRMEFRc0I1cW1ZOGcvNjQw?x-oss-process=image/format,png) # 1.1 Kafka集群架构 Kafka集群由多个称为代理的服务器组成,这
recommend-type

Windows 运行Python脚本

要在 Windows 上运行 Python 脚本,你需要先安装 Python。可以从官网下载 Python 安装包并按照提示进行安装。安装完成后,就可以在命令行中输入 `python` 命令,进入 Python 解释器环境。 接着,你可以编写 Python 脚本,保存为 `.py` 后缀的文件。在命令行中进入脚本所在的目录,输入 `python script.py` 命令来运行脚本。其中 `script.py` 是你的脚本文件名。 如果你想在 Windows 上运行一个 Python 程序,但不想打开命令行窗口,可以将脚本文件拖动到 Python 可执行文件 `python.exe` 上,