test_stats = evaluate(data_loader_val, model, device) print(f"Accuracy of the network on the {len(dataset_val)} test images: {test_stats['acc1']:.1f}%") max_accuracy = max(max_accuracy, test_stats["acc1"]) print(f'Max accuracy: {max_accuracy:.2f}%')在这段代码的基础添加输出在训练集上的准确率的代码怎么写
时间: 2024-03-22 07:36:49 浏览: 40
NSGA-II.rar_NSGA_NSGA-II_The Number_evaluate_objective
要输出在训练集上的准确率,可以在训练循环中添加代码进行计算并输出。可以先定义一个函数,在每个epoch结束时调用该函数计算训练集准确率并输出。
以下是可能的实现示例:
```python
def evaluate_train(data_loader_train, model, device):
model.train(False) # 将模型设置为评估模式
total = 0
correct = 0
with torch.no_grad():
for data in data_loader_train:
inputs, labels = data
inputs = inputs.to(device)
labels = labels.to(device)
outputs = model(inputs)
_, predicted = torch.max(outputs.data, 1)
total += labels.size(0)
correct += (predicted == labels).sum().item()
accuracy = 100 * correct / total
print(f"Accuracy of the network on the {total} training images: {accuracy:.1f}%")
return accuracy
```
然后在每个epoch结束时调用该函数,并记录最大准确率:
```python
max_accuracy_train = 0
for epoch in range(num_epochs):
# 训练模型
# ...
# 在训练集上评估模型
train_accuracy = evaluate_train(data_loader_train, model, device)
max_accuracy_train = max(max_accuracy_train, train_accuracy)
print(f'Max training accuracy: {max_accuracy_train:.2f}%')
# 在验证集上评估模型
test_stats = evaluate(data_loader_val, model, device)
print(f"Accuracy of the network on the {len(dataset_val)} test images: {test_stats['acc1']:.1f}%")
max_accuracy = max(max_accuracy, test_stats["acc1"])
print(f'Max accuracy: {max_accuracy:.2f}%')
```
这样就可以在训练过程中同时输出训练集和验证集的准确率,并记录最大准确率。
阅读全文