用c++编写对于两个 n×n 的矩阵 A 和 B,计算 C=A×B。采用分治法设计实现更有效的算法。
时间: 2024-04-30 17:20:23 浏览: 110
可以采用Strassen算法来对两个矩阵进行分治计算,时间复杂度为O(n^log2(7))。
以下是C语言实现代码:
```c
#include <stdio.h>
#include <stdlib.h>
void strassen(int n, int **A, int **B, int **C);
void add(int n, int **A, int **B, int **C);
void sub(int n, int **A, int **B, int **C);
void split(int n, int **A, int ***A11, int ***A12, int ***A21, int ***A22);
void merge(int n, int ***A11, int ***A12, int ***A21, int ***A22, int **A);
void printMatrix(int n, int **A);
int main()
{
int n;
printf("Enter the size of matrix: ");
scanf("%d", &n);
int **A, **B, **C;
A = (int **)malloc(n * sizeof(int *));
B = (int **)malloc(n * sizeof(int *));
C = (int **)malloc(n * sizeof(int *));
for (int i = 0; i < n; i++)
{
A[i] = (int *)malloc(n * sizeof(int));
B[i] = (int *)malloc(n * sizeof(int));
C[i] = (int *)malloc(n * sizeof(int));
}
printf("Enter elements of matrix A:\n");
for (int i = 0; i < n; i++)
{
for (int j = 0; j < n; j++)
{
scanf("%d", &A[i][j]);
}
}
printf("Enter elements of matrix B:\n");
for (int i = 0; i < n; i++)
{
for (int j = 0; j < n; j++)
{
scanf("%d", &B[i][j]);
}
}
strassen(n, A, B, C);
printf("Resultant matrix C is:\n");
printMatrix(n, C);
for (int i = 0; i < n; i++)
{
free(A[i]);
free(B[i]);
free(C[i]);
}
free(A);
free(B);
free(C);
return 0;
}
void strassen(int n, int **A, int **B, int **C)
{
if (n == 1)
{
C[0][0] = A[0][0] * B[0][0];
return;
}
int **A11, **A12, **A21, **A22, **B11, **B12, **B21, **B22;
A11 = (int **)malloc((n / 2) * sizeof(int *));
A12 = (int **)malloc((n / 2) * sizeof(int *));
A21 = (int **)malloc((n / 2) * sizeof(int *));
A22 = (int **)malloc((n / 2) * sizeof(int *));
B11 = (int **)malloc((n / 2) * sizeof(int *));
B12 = (int **)malloc((n / 2) * sizeof(int *));
B21 = (int **)malloc((n / 2) * sizeof(int *));
B22 = (int **)malloc((n / 2) * sizeof(int *));
for (int i = 0; i < n / 2; i++)
{
A11[i] = (int *)malloc((n / 2) * sizeof(int));
A12[i] = (int *)malloc((n / 2) * sizeof(int));
A21[i] = (int *)malloc((n / 2) * sizeof(int));
A22[i] = (int *)malloc((n / 2) * sizeof(int));
B11[i] = (int *)malloc((n / 2) * sizeof(int));
B12[i] = (int *)malloc((n / 2) * sizeof(int));
B21[i] = (int *)malloc((n / 2) * sizeof(int));
B22[i] = (int *)malloc((n / 2) * sizeof(int));
}
split(n, A, &A11, &A12, &A21, &A22);
split(n, B, &B11, &B12, &B21, &B22);
int **P1, **P2, **P3, **P4, **P5, **P6, **P7;
P1 = (int **)malloc((n / 2) * sizeof(int *));
P2 = (int **)malloc((n / 2) * sizeof(int *));
P3 = (int **)malloc((n / 2) * sizeof(int *));
P4 = (int **)malloc((n / 2) * sizeof(int *));
P5 = (int **)malloc((n / 2) * sizeof(int *));
P6 = (int **)malloc((n / 2) * sizeof(int *));
P7 = (int **)malloc((n / 2) * sizeof(int *));
for (int i = 0; i < n / 2; i++)
{
P1[i] = (int *)malloc((n / 2) * sizeof(int));
P2[i] = (int *)malloc((n / 2) * sizeof(int));
P3[i] = (int *)malloc((n / 2) * sizeof(int));
P4[i] = (int *)malloc((n / 2) * sizeof(int));
P5[i] = (int *)malloc((n / 2) * sizeof(int));
P6[i] = (int *)malloc((n / 2) * sizeof(int));
P7[i] = (int *)malloc((n / 2) * sizeof(int));
}
int **A_temp1, **A_temp2, **B_temp1, **B_temp2, **C11, **C12, **C21, **C22;
A_temp1 = (int **)malloc((n / 2) * sizeof(int *));
A_temp2 = (int **)malloc((n / 2) * sizeof(int *));
B_temp1 = (int **)malloc((n / 2) * sizeof(int *));
B_temp2 = (int **)malloc((n / 2) * sizeof(int *));
C11 = (int **)malloc((n / 2) * sizeof(int *));
C12 = (int **)malloc((n / 2) * sizeof(int *));
C21 = (int **)malloc((n / 2) * sizeof(int *));
C22 = (int **)malloc((n / 2) * sizeof(int *));
for (int i = 0; i < n / 2; i++)
{
A_temp1[i] = (int *)malloc((n / 2) * sizeof(int));
A_temp2[i] = (int *)malloc((n / 2) * sizeof(int));
B_temp1[i] = (int *)malloc((n / 2) * sizeof(int));
B_temp2[i] = (int *)malloc((n / 2) * sizeof(int));
C11[i] = (int *)malloc((n / 2) * sizeof(int));
C12[i] = (int *)malloc((n / 2) * sizeof(int));
C21[i] = (int *)malloc((n / 2) * sizeof(int));
C22[i] = (int *)malloc((n / 2) * sizeof(int));
}
// P1 = (A11 + A22) * (B11 + B22)
add(n / 2, A11, A22, A_temp1);
add(n / 2, B11, B22, B_temp1);
strassen(n / 2, A_temp1, B_temp1, P1);
// P2 = (A21 + A22) * B11
add(n / 2, A21, A22, A_temp1);
strassen(n / 2, A_temp1, B11, P2);
// P3 = A11 * (B12 - B22)
sub(n / 2, B12, B22, B_temp1);
strassen(n / 2, A11, B_temp1, P3);
// P4 = A22 * (B21 - B11)
sub(n / 2, B21, B11, B_temp1);
strassen(n / 2, A22, B_temp1, P4);
// P5 = (A11 + A12) * B22
add(n / 2, A11, A12, A_temp1);
strassen(n / 2, A_temp1, B22, P5);
// P6 = (A21 - A11) * (B11 + B12)
sub(n / 2, A21, A11, A_temp1);
add(n / 2, B11, B12, B_temp1);
strassen(n / 2, A_temp1, B_temp1, P6);
// P7 = (A12 - A22) * (B21 + B22)
sub(n / 2, A12, A22, A_temp1);
add(n / 2, B21, B22, B_temp1);
strassen(n / 2, A_temp1, B_temp1, P7);
// C11 = P1 + P4 - P5 + P7
add(n / 2, P1, P4, C11);
sub(n / 2, C11, P5, C11);
add(n / 2, C11, P7, C11);
// C12 = P3 + P5
add(n / 2, P3, P5, C12);
// C21 = P2 + P4
add(n / 2, P2, P4, C21);
// C22 = P1 - P2 + P3 + P6
sub(n / 2, P1, P2, C22);
add(n / 2, C22, P3, C22);
add(n / 2, C22, P6, C22);
merge(n, &C11, &C12, &C21, &C22, C);
for (int i = 0; i < n / 2; i++)
{
free(A11[i]);
free(A12[i]);
free(A21[i]);
free(A22[i]);
free(B11[i]);
free(B12[i]);
free(B21[i]);
free(B22[i]);
free(P1[i]);
free(P2[i]);
free(P3[i]);
free(P4[i]);
free(P5[i]);
free(P6[i]);
free(P7[i]);
free(A_temp1[i]);
free(A_temp2[i]);
free(B_temp1[i]);
free(B_temp2[i]);
free(C11[i]);
free(C12[i]);
free(C21[i]);
free(C22[i]);
}
free(A11);
free(A12);
free(A21);
free(A22);
free(B11);
free(B12);
free(B21);
free(B22);
free(P1);
free(P2);
free(P3);
free(P4);
free(P5);
free(P6);
free(P7);
free(A_temp1);
free(A_temp2);
free(B_temp1);
free(B_temp2);
free(C11);
free(C12);
free(C21);
free(C22);
}
void add(int n, int **A, int **B, int **C)
{
for (int i = 0; i < n; i++)
{
for (int j = 0; j < n; j++)
{
C[i][j] = A[i][j] + B[i][j];
}
}
}
void sub(int n, int **A, int **B, int **C)
{
for (int i = 0; i < n; i++)
{
for (int j = 0; j < n; j++)
{
C[i][j] = A[i][j] - B[i][j];
}
}
}
void split(int n, int **A, int ***A11, int ***A12, int ***A21, int ***A22)
{
*A11 = (int **)malloc((n / 2) * sizeof(int *));
*A12 = (int **)malloc((n / 2) * sizeof(int *));
*A21 = (int **)malloc((n / 2) * sizeof(int *));
*A22 = (int **)malloc((n / 2) * sizeof(int *));
for (int i = 0; i < n / 2; i++)
{
(*A11)[i] = (int *)malloc((n / 2) * sizeof(int));
(*A12)[i] = (int *)malloc((n / 2) * sizeof(int));
(*A21)[i] = (int *)malloc((n / 2) * sizeof(int));
(*A22)[i] = (int *)malloc((n / 2) * sizeof(int));
}
for (int i = 0; i < n / 2; i++)
{
for (int j = 0; j < n / 2; j++)
{
(*A11)[i][j] = A[i][j];
(*A12)[i][j] = A[i][j + n / 2];
(*A21)[i][j] = A[i + n / 2][j];
(*A22)[i][j] = A[i + n / 2][j + n / 2];
}
}
}
void merge(int n, int ***A11, int ***A12, int ***A21, int ***A22, int **A)
{
for (int i = 0; i < n / 2; i++)
{
for (int j = 0; j < n / 2; j++)
{
A[i][j] = (*A11)[i][j];
A[i][j + n / 2] = (*A12)[i][j];
A[i + n / 2][j] = (*A21)[i][j];
A[i + n / 2][j + n / 2] = (*A22)[i][j];
}
}
}
void printMatrix(int n, int **A)
{
for (int i = 0; i < n; i++)
{
for (int j = 0; j < n; j++)
{
printf("%d ", A[i][j]);
}
printf("\n");
}
}
```
阅读全文