python对中文txt进行词云分析生成的图片没有字而是一个个方框请问这是怎么回事?import jieba import wordcloud with open('a.txt','r',encoding="utf-8") as f: temp = f.read() words = jieba.lcut(temp) words = " ".join(words) pl = wordcloud.WordCloud( width = 1000,height = 1000, background_color = "white", #font_path = r"C:\\Windows\\Fonts\\TEMPSITC.TTF" ) pl.generate(temp) pl.to_file("C:\\Users\\86150\\Desktop\\1.png")并检查一下代码的错误
时间: 2023-07-07 08:40:39 浏览: 158
这可能是因为你的字体库没有支持中文字符。你可以尝试将`font_path`参数设置为一个支持中文的字体文件路径。例如:
```
font_path = r"C:\Windows\Fonts\SimSun.ttf"
```
另外,你需要将`pl.generate(temp)`中的`temp`改为`words`,以使用中文分词后的单词列表生成词云。修改后的代码如下:
```
import jieba
import wordcloud
with open('a.txt','r',encoding="utf-8") as f:
temp = f.read()
words = jieba.lcut(temp)
words = " ".join(words)
pl = wordcloud.WordCloud(
width = 1000,height = 1000,
background_color = "white",
font_path = r"C:\Windows\Fonts\SimSun.ttf"
)
pl.generate(words)
pl.to_file("C:\\Users\\86150\\Desktop\\1.png")
```
注意,你需要将`font_path`参数中的路径改为你自己的中文字体文件路径。
相关问题
用Python的jieba和wordcloud编程对一个英文文本进行词频统计和词云展示
在Python中,你可以使用jieba库处理中文文本,而WordCloud库则用于生成词云图,但它们通常用于处理中文文本而非直接应用于英文。对于英文文本的词频统计和词云展示,你需要用到`nltk`库(Natural Language Toolkit)以及`wordcloud`库。
首先,安装必要的库(如果你还没有安装):
```bash
pip install jieba wordcloud nltk matplotlib
```
然后,以下是基本步骤:
1. **词频统计**:
- 导入所需的模块:
```python
from collections import Counter
from nltk.corpus import stopwords
from nltk.tokenize import word_tokenize
```
- 加载英文文本并进行分词:
```python
text = "your_english_text"
stop_words = set(stopwords.words('english')) # 英文停用词
tokens = word_tokenize(text)
filtered_tokens = [token for token in tokens if token.lower() not in stop_words]
```
- 使用`Counter`计算词频:
```python
word_freq = Counter(filtered_tokens)
```
2. **词云展示**:
```python
from wordcloud import WordCloud
import matplotlib.pyplot as plt
def create_wordcloud(word_freq):
wordcloud = WordCloud(width=800, height=400, background_color='white', min_font_size=10).generate_from_frequencies(word_freq)
plt.figure(figsize=(10, 5))
plt.imshow(wordcloud, interpolation="bilinear")
plt.axis("off")
plt.show()
create_wordcloud(word_freq)
```
请注意,这个过程假设了你已经有了一个可用的英文文本字符串,并且`nltk`库已经下载了英文停用词列表。如果你需要对中文文本进行类似的分析,可以使用jieba库的分词功能,然后跳过使用`nltk`的部分。此外,英文词云可能不如中文直观,因为英文单词的形态变化较少,所以词云可能看起来相对平淡。
用python语言利用jieba库分析文本,并利用wordcloud库生成一个txt文件的词云
好的,非常感谢您的提问!根据您的要求,您可以按照以下步骤进行操作:
1. 安装jieba库和wordcloud库。可以使用pip命令进行安装,如下:
```
pip install jieba
pip install wordcloud
```
2. 导入库:
```
import jieba
from wordcloud import WordCloud
```
3. 读取文本:
```
with open('filename.txt', 'r', encoding='utf-8') as f:
text = f.read()
```
4. 使用jieba库进行分词:
```
# 结巴分词
seg_list = jieba.cut(text, cut_all=False)
```
5. 将分词结果转换成字符串:
```
result = ' '.join(seg_list)
```
6. 使用WordCloud库生成词云,并保存为txt文件:
```
# 生成词云
wordcloud = WordCloud(background_color='white', width=800, height=600).generate(result)
# 保存为txt文件
wordcloud.to_file('output.txt')
```
以上就是利用python语言和jieba、wordcloud库进行文本分析和词云生成的示例代码。如果您有其他问题或需求,请随时提出,我会尽力帮助您解决。
阅读全文
相关推荐
















