梯形公式逐次分半法求积分matlab的代码
时间: 2023-09-23 20:12:23 浏览: 501
以下是用梯形公式逐次分半法求积分的 MATLAB 代码:
```matlab
function I = trapezoidal_adaptive(f, a, b, tol)
% f: 被积函数
% a、b:积分区间
% tol: 容差
% 计算初值
h = b - a;
T(1) = (f(a) + f(b)) * h / 2;
% 开始递归
n = 1;
while true
% 将区间分成两部分
x = a + h/2 : h : b - h/2;
% 计算新的梯形求和
T(n+1) = T(n)/2 + h * sum(f(x));
% 计算误差
err = abs(T(n+1) - T(n));
% 如果误差小于容差,则返回
if err < tol
break;
end
% 更新参数
n = n + 1;
h = h/2;
end
I = T(n+1);
end
```
其中,`f` 为被积函数,`a`、`b` 为积分区间,`tol` 为容差。函数返回的 `I` 即为所求积分的近似值。
相关问题
梯形公式逐次分半法求积分matlab的算法
梯形公式逐次分半法求积分的 MATLAB 算法如下:
```matlab
function [I, n] = trapezoidal_rule(f, a, b, tol)
% 梯形公式逐次分半法求积分
% 输入:
% - f: 被积函数句柄
% - a, b: 积分区间
% - tol: 精度要求
% 输出:
% - I: 积分近似值
% - n: 迭代次数
I0 = 0.5 * (b - a) * (f(a) + f(b)); % 初始迭代
n = 1; % 迭代次数
while true
% 迭代计算
h = 0.5^(n-1) * (b - a); % 步长
x = a + h : 2*h : b - h; % 样本点
I = 0.5 * (I0 + h * sum(f(x))); % 迭代计算值
% 判断是否满足精度要求
if abs(I - I0) < tol
break
end
% 更新迭代计算值
I0 = I;
n = n + 1;
end
end
```
其中,`f` 是被积函数的句柄,`a` 和 `b` 是积分区间的端点,`tol` 是精度要求。函数返回近似积分值 `I` 和迭代次数 `n`。函数首先进行一次初始迭代计算,然后每一次迭代将积分区间分成两半,并在子区间上进行梯形公式的计算。计算得到的积分值和上一次迭代计算的积分值的差小于精度要求时,迭代结束。
阅读全文
相关推荐

















