k = 5 error = 0 color_cate = {1: 'b', 2: 'r', 3: 'g', 4: 'y'} plt.figure(figsize=(10, 6)) for index1, item1 in enumerate(zip(raw_data, pca_data)): raw_points, pca_points = item1[0], item1[1] x_train, y_train = [], [] for index2, item2 in enumerate(raw_data): if index1 != index2: x_train.append(item2[1:]) y_train.append(item2[0]) knn = KNeighborsClassifier(n_neighbors=k, weights='distance') knn.fit(x_train, y_train.astype('int')) x_test = [raw_points[1:]] predict = knn.predict(x_test) if predict[0] != raw_points[0]: error += 1 print('预测:', predict[0], '真实:', raw_points[:1])该怎么修改
时间: 2024-04-23 11:25:43 浏览: 90
这段代码看起来是在进行K近邻分类器的训练和测试,并统计预测错误率。如果您想要修改这段代码,可能需要先确定您的具体需求。以下是一些常见的修改方案:
1. 修改k值,改变K近邻的数量:
您可以尝试修改k值,看看它对分类器的性能有何影响。在这段代码中,k = 5,如果您想尝试其他的k值,可以直接修改这个参数。
2. 修改分类器的权重:
在这段代码中,分类器的权重是 'distance',这意味着分类器会考虑到每个邻居的距离,距离越近的邻居会被赋予更大的权重。如果您想尝试其他的权重方式,可以将 'distance' 改为 'uniform',这样每个邻居的权重都相等。
3. 修改数据的可视化方式:
在这段代码的末尾,使用了Matplotlib库将分类结果可视化。如果您想尝试其他的可视化方式,可以尝试使用其他的可视化库,或者进行自定义绘图。
4. 修改错误率的统计方式:
在这段代码中,用 error 变量记录了预测错误的次数,并在预测错误时打印了一条信息。如果您想尝试其他的错误率统计方式,可以将错误率的计算方式改为返回一个错误率值,或者将错误样本的信息保存到一个列表或文件中。
相关问题
from sklearn import metrics from sklearn.model_selection import train_test_split from sklearn.linear_model import LogisticRegression from imblearn.combine import SMOTETomek from sklearn.metrics import auc, roc_curve, roc_auc_score from sklearn.feature_selection import SelectFromModel import pandas as pd import numpy as np import matplotlib matplotlib.use('TkAgg') import matplotlib.pyplot as plt from sklearn.metrics import confusion_matrix #1、数据输入 df_table_all = pd.read_csv(r"D:\trainafter.csv",index_col=0) #2、目标和特征区分 X = df_table_all.drop(["Y"],axis=1).values Y = np.array(df_table_all["Y"]) #3、按比例切割数据 X_train,X_test,Y_train,Y_test = train_test_split(X,Y,test_size=0.3,random_state=0) #4、样本平衡, st= SMOTETomek() X_train_st,Y_train_st = st.fit_resample(X_train,Y_train) #4、特征选择: #创建特征选择模型 sfm = SelectFromModel(LogisticRegression(penalty='l1',C=1.0,solver="liblinear")) #训练特征选择模型 sfm.fit(X_train,Y_train) #讲数据转换,剩下重要的特征 X_train_tiny = sfm.transform(X_train) X_test_tiny = sfm.transform(X_test) #5、创建模型 model = LogisticRegression(penalty='l1',C=1.0,solver="liblinear") model.fit(X_train_st_tiny,Y_train_st) #6、预测 y_pred = model.predict_proba(X_test_st_tiny) y_cate = model.predict(X_test_st_tiny) c=confusion_matrix(Y_test,y_cate) print(c) def report_auc(y_true,y_prob,title,out_name="",lw=2): fpr,tpr,_=roc_curve(y_true,y_prob,pos_label=1) print(fpr) print(tpr) plt.figure() plt.plot(fpr,tpr,color="darkorange",lw=lw,lable="ROC curve") plt.plot([0,1],[0,1],color="yellow",lw=lw,linestyle="--") plt.xlim([0,1]) plt.ylim([0,1.05]) plt.title(title) plt.legend(loc='lower right') plt.show(0) plt.savefig(r"d:\LR"+out_name,dpi=800) plt.close("all") report_auc(Y_test,y_pred[:,1],"Logistic with L1 panetly",'LG')
这段代码是用于机器学习中的分类问题,主要使用了scikit-learn库中的一些模块和函数,包括metrics、model_selection、linear_model、feature_selection等。其中,LogisticRegression是用于逻辑回归模型的,SMOTETomek是用于处理样本不平衡问题的,auc、roc_curve、roc_auc_score是用于评估分类模型性能的指标,train_test_split是用于将数据集分为训练集和测试集的,SelectFromModel是用于特征选择的。同时,还使用了pandas、numpy、matplotlib等库进行数据处理和可视化。最后,使用confusion_matrix函数生成混淆矩阵,用于评估分类模型的准确性。
import matplotlib.pyplot as plt import pandas as pd import seaborn as sns from sklearn.ensemble import RandomForestClassifier from sklearn.metrics import accuracy_score from sklearn.model_selection import train_test_split # 读取训练集和测试集数据 train_data = pd.read_csv(r'C:\ADULT\Titanic\train.csv') test_data = pd.read_csv(r'C:\ADULT\Titanic\test.csv') # 统计训练集和测试集缺失值数目 print(train_data.isnull().sum()) print(test_data.isnull().sum()) # 处理 Age, Fare 和 Embarked 缺失值 most_lists = ['Age', 'Fare', 'Embarked'] for col in most_lists: train_data[col] = train_data[col].fillna(train_data[col].mode()[0]) test_data[col] = test_data[col].fillna(test_data[col].mode()[0]) # 拆分 X, Y 数据并将分类变量 one-hot 编码 y_train_data = train_data['Survived'] features = ['Pclass', 'Age', 'SibSp', 'Parch', 'Fare', 'Sex', 'Embarked'] X_train_data = pd.get_dummies(train_data[features]) X_test_data = pd.get_dummies(test_data[features]) # 合并训练集 Y 和 X 数据,并创建乘客信息分类变量 train_data_selected = pd.concat([y_train_data, X_train_data], axis=1) print(train_data_selected) cate_features = ['Pclass', 'SibSp', 'Parch', 'Sex', 'Embarked', 'Age_category', 'Fare_category'] train_data['Age_category'] = pd.cut(train_data.Fare, bins=range(0, 100, 10)).astype(str) train_data['Fare_category'] = pd.cut(train_data.Fare, bins=list(range(-20, 110, 20)) + [800]).astype(str) print(train_data) # 统计各分类变量的分布并作出可视化呈现 plt.figure(figsize=(18, 16)) plt.subplots_adjust(hspace=0.3, wspace=0.3) for i, cate_feature in enumerate(cate_features): plt.subplot(7, 2, 2 * i + 1) sns.histplot(x=cate_feature, data=train_data, stat="density") plt.xlabel(cate_feature) plt.ylabel('Density') plt.subplot(7, 2, 2 * i + 2) sns.lineplot(x=cate_feature, y='Survived', data=train_data) plt.xlabel(cate_feature) plt.ylabel('Survived') plt.show() # 绘制点状的相关系数热图 plt.figure(figsize=(12, 8)) sns.heatmap(train_data_selected.corr(), vmin=-1, vmax=1, annot=True) plt.show() sourceRow = 891 output = pd.DataFrame({'PassengerId': test_data.PassengerId, 'Survived': predictions}) output.head() # 保存结果 output.to_csv('gender_submission.csv', index=False) print(output) train_X, test_X, train_y, test_y = train_test_split(X_train_data, y_train_data, train_size=0.8, random_state=42) print("随机森林分类结果") y_pred_train1 = train_data.predict(train_X) y_pred_test1 = train_data.predict(test_X) accuracy_train1 = accuracy_score(train_y, y_pred_train1) accuracy_test1 = accuracy_score(test_y, y_pred_test1) print("训练集——随机森林分类器准确率为:", accuracy_train1) print("测试集——随机森林分类器准确率为:", accuracy_train1)
在你的代码中,你正在尝试从 `train_data` 对象上调用一个名为 "predict" 的方法,而 `train_data` 实际上是一个 DataFrame 对象,该对象并没有 "predict" 方法。你应该使用你之前定义的随机森林分类器对象 `RandomForestClassifier` 来进行预测。请将以下代码:
```
y_pred_train1 = train_data.predict(train_X)
y_pred_test1 = train_data.predict(test_X)
```
更改为:
```
# 定义随机森林分类器对象
rfc = RandomForestClassifier(n_estimators=100, max_depth=5, random_state=42)
# 在训练数据上拟合分类器
rfc.fit(train_X, train_y)
# 在训练集和测试集上进行预测
y_pred_train1 = rfc.predict(train_X)
y_pred_test1 = rfc.predict(test_X)
```
这将使用你之前定义的随机森林分类器对象 `rfc` 来进行预测。同时,你需要使用 `rfc.fit(train_X, train_y)` 在训练数据上拟合分类器,然后使用 `rfc.predict(train_X)` 和 `rfc.predict(test_X)` 在训练集和测试集上进行预测。
阅读全文