base_model = tf.keras.applications.MobileNet(weights = "imagenet", include_top = False, input_shape = input_shape) base_model.trainable = False inputs = keras.Input(shape = input_shape) x = base_model(inputs, training = False) x = tf.keras.layers.GlobalAveragePooling2D()(x) x = tf.keras.layers.Dropout(0.2)(x) x = tf.keras.layers.Dense(len(categories), activation="softmax")(x) model = keras.Model(inputs = inputs, outputs = x, name="LeafDisease_MobileNet") weight_path = os.path.join(base_dir, 'checkpoints', 'my_checkpoint') model.load_weights(weight_path) img = plt.imread(img_path) img = img / 255. img = cv2.resize(img, (224, 224)) img = img.reshape(-1, 224, 224, 3) img.astype('float32') result = model.predict(img) cate_result = categories[np.argmax(result, axis=1)[0]] return cate_result
时间: 2023-11-09 10:06:41 浏览: 242
这段代码看起来是使用预训练的 MobileNet 模型对植物叶片疾病进行分类。首先加载了 MobileNet 模型的权重,并将其冻结以防止在训练过程中对其进行更新。然后定义了一个包含分类输出的新模型,并将该模型的权重加载为之前训练好的权重。最后,读取待分类的图像并将其调整为适合 MobileNet 模型输入的大小,然后将其传递给新模型进行预测,返回预测结果的类别。
相关问题
base_model = tf.keras.applications.MobileNetV2(input_shape=IMG_SHAPE, include_top=False, weights='imagenet') base_model.trainable = False这段代码什么意思,用到的原理是什么,为什么要这样做,详细介绍每个参数
这段代码使用了 TensorFlow 中的 MobileNetV2 模型作为基础模型(base model)。下面是对每个参数的详细解释:
1. `input_shape=IMG_SHAPE`:这是输入数据的形状,用于指定输入图像的尺寸。
2. `include_top=False`:这个参数指定是否包含模型的顶层(top layer),即分类器部分。设置为 False 表示不包含顶层,只保留模型的卷积部分。
3. `weights='imagenet'`:这个参数指定加载预训练权重的来源。设置为 'imagenet' 表示加载在 ImageNet 数据集上预训练的权重。
接下来的一行代码 `base_model.trainable = False` 将基础模型的参数设置为不可训练,即冻结(freeze)模型的权重。这样做的原因是将预训练的 MobileNetV2 模型作为特征提取器,固定其权重可以帮助保留预训练模型在大规模图像数据上学到的特征表达能力,避免在小规模数据集上过拟合。冻结模型的权重还可以加快训练过程,因为只需要计算模型的前向传播而无需进行反向传播和参数更新。
通过这种方式,我们可以利用预训练的 MobileNetV2 模型来提取图像特征,然后在这些特征的基础上构建自定义的分类器或回归器,从而适应特定的任务。这种迁移学习的方法可以提高模型的性能和泛化能力。
def model_load(IMG_SHAPE=(224, 224, 3), class_num=12): # 加载预训练的mobilenet模型 base_model = tf.keras.applications.MobileNetV2(input_shape=IMG_SHAPE, include_top=False, weights='imagenet') # 将模型的主干参数进行冻结 base_model.trainable = False model = tf.keras.models.Sequential([ # 进行归一化的处理 tf.keras.layers.experimental.preprocessing.Rescaling(1. / 127.5, offset=-1, input_shape=IMG_SHAPE), # 设置主干模型 base_model, # 对主干模型的输出进行全局平均池化 tf.keras.layers.GlobalAveragePooling2D(), # 通过全连接层映射到最后的分类数目上 tf.keras.layers.Dense(class_num, activation='softmax') ]) model.summary() # 模型训练的优化器为adam优化器,模型的损失函数为交叉熵损失函数 model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy']) return model
这段代码定义了一个函数`model_load`,用于加载预训练的MobileNetV2模型,并根据给定的图像形状和类别数创建一个新的模型。
首先,代码使用`tf.keras.applications.MobileNetV2`加载了一个预训练的MobileNetV2模型,其中`input_shape`参数指定了输入图像的形状,`include_top=False`表示不包含顶部的全连接层,`weights='imagenet'`表示使用在ImageNet数据集上预训练的权重。
接下来,通过设置`base_model.trainable = False`将模型的主干参数冻结,即不参与训练过程。
然后,使用`tf.keras.models.Sequential`创建一个序列模型,并按顺序添加各个层:
1. `tf.keras.layers.experimental.preprocessing.Rescaling`层用于对输入图像进行归一化处理。
2. 将预训练的MobileNetV2模型作为主干模型添加到序列模型中。
3. `tf.keras.layers.GlobalAveragePooling2D`层用于对主干模型的输出进行全局平均池化操作。
4. `tf.keras.layers.Dense`层通过全连接层将特征映射到最后的类别数目上,并使用softmax激活函数进行分类。
随后,通过调用`model.summary()`方法来打印模型的摘要信息。
最后,使用`model.compile()`方法配置模型的优化器为Adam优化器,损失函数为交叉熵损失函数,评估指标为准确率。
函数最后返回创建的模型。
阅读全文