pyswarm.pso(demo_main, lb, ub, swarmsize=10, maxiter=10,phip=2.5,phig=2.5)对于参数的搜索范围设定成固定步长例如0.1、0.2、0.3。python代码举例说明

时间: 2024-03-01 14:54:51 浏览: 35
以下是一个示例代码,演示如何使用 pyswarm 算法进行参数搜索,其中搜索范围的下界和上界分别为 lb 和 ub,搜索步长为 0.1、0.2、0.3。 ```python import numpy as np from pyswarm import pso # 定义目标函数 def objective(x): return x[0]**2 + x[1]**2 # 定义搜索范围的下界和上界 lb = np.array([0, 0]) ub = np.array([1, 1]) # 定义搜索步长 step = np.array([0.1, 0.2]) # 计算搜索空间大小 search_space_size = np.round((ub - lb) / step).astype(int) # 生成参数离散值列表 x0_list = [] for i in range(search_space_size[0]): for j in range(search_space_size[1]): x0_list.append([lb[0] + i * step[0], lb[1] + j * step[1]]) # 进行参数搜索 xopt, fopt = pso(objective, lb, ub, swarmsize=len(x0_list), maxiter=10, phip=2.5, phig=2.5, omega=0.5, xtol=1e-6, minstep=1e-8, minfunc=1e-8, debug=False, particle_output=False, setseed=None, args=(), kwargs={}, init_pos=x0_list) # 输出最优解和最优值 print("最优解:", xopt) print("最优值:", fopt) ``` 在这个示例代码中,我们使用了 numpy 库来进行数组计算,使用了 pyswarm 算法进行参数搜索。首先,我们定义了目标函数 objective(x),其中 x 是一个二维数组,表示两个参数的取值。然后,我们定义了搜索范围的下界和上界 lb 和 ub,以及搜索步长 step。接着,我们计算了每个参数的搜索空间大小 search_space_size,并将其转换为整数值。然后,我们根据每个参数的搜索空间大小和搜索步长,生成了参数的离散值列表 x0_list。最后,我们使用 pyswarm.pso() 函数进行参数搜索,将离散值列表作为初始位置,得到了最优解和最优值。

相关推荐

import numpy as np import pandas as pd from sklearn.model_selection import train_test_split from keras.models import Sequential from keras.layers import Dense from pyswarm import pso import matplotlib.pyplot as plt from sklearn.preprocessing import StandardScaler from sklearn.metrics import mean_absolute_error from sklearn.metrics import mean_squared_error from sklearn.metrics import r2_score file = "zhong.xlsx" data = pd.read_excel(file) #reading file X=np.array(data.loc[:,'种植密度':'有效积温']) y=np.array(data.loc[:,'产量']) y.shape=(185,1) # 将数据集分为训练集和测试集 X_train, X_test, y_train, y_test = train_test_split(X,y, test_size=0.25, random_state=10) SC=StandardScaler() X_train=SC.fit_transform(X_train) X_test=SC.fit_transform(X_test) y_train=SC.fit_transform(y_train) y_test=SC.fit_transform(y_test) print("X_train.shape:", X_train.shape) print("X_test.shape:", X_test.shape) print("y_train.shape:", y_train.shape) print("y_test.shape:", y_test.shape) # 定义BP神经网络模型 def nn_model(X): model = Sequential() model.add(Dense(8, input_dim=X_train.shape[1], activation='relu')) model.add(Dense(12, activation='relu')) model.add(Dense(1)) model.compile(loss='mean_squared_error', optimizer='adam') return model # 定义适应度函数 def fitness_func(X): model = nn_model(X) model.fit(X_train, y_train, epochs=60, verbose=2) score = model.evaluate(X_test, y_test, verbose=2) print(score) # 定义变量的下限和上限 lb = [5, 5] ub = [30, 30] # 利用PySwarm库实现改进的粒子群算法来优化BP神经网络预测模型 result = pso(fitness_func, lb, ub) # 输出最优解和函数值 print('最优解:', result[0]) print('最小函数值:', result[1]) mpl.rcParams["font.family"] = "SimHei" mpl.rcParams["axes.unicode_minus"] = False # 绘制预测值和真实值对比图 model = nn_model(X) model.fit(X_train, y_train, epochs=60, verbose=2) y_pred = model.predict(X_test) y_true = SC.inverse_transform(y_test) y_pred=SC.inverse_transform(y_pred) plt.figure() plt.plot(y_true,"bo-",label = '真实值') plt.plot(y_pred,"ro-", label = '预测值') plt.title('神经网络预测展示') plt.xlabel('序号') plt.ylabel('产量') plt.legend(loc='upper right') plt.show() print("R2 = ",r2_score(y_test, y_pred)) # R2 # 绘制损失函数曲线图 model = nn_model(X) history = model.fit(X_train, y_train, epochs=60, validation_data=(X_test, y_test), verbose=2) plt.plot(history.history['loss'], label='train') plt.plot(history.history['val_loss'], label='test') plt.legend() plt.show() mae = mean_absolute_error(y_test, y_pred) print('MAE: %.3f' % mae) mse = mean_squared_error(y_test, y_pred) print('mse: %.3f' % mse)

class PSO_VRP: def __init__(self, num_particles, num_iterations, num_customers, max_capacity, max_distance, distances, demands): self.num_particles = num_particles self.num_iterations = num_iterations self.num_customers = num_customers self.max_capacity = max_capacity self.max_distance = max_distance self.distances = distances self.demands = demands self.global_best_fitness = float('inf') self.global_best_position = [0] * num_customers self.particles = [] def initialize_particles(self): for _ in range(self.num_particles): particle = Particle(self.num_customers, self.max_capacity, self.max_distance) self.particles.append(particle) def update_particles(self): for particle in self.particles: for i in range(len(particle.position)): r1 = random.random() r2 = random.random() particle.velocity[i] = 0.5 * particle.velocity[i] + 2 * r1 * (particle.best_position[i] - particle.position[i]) + 2 * r2 * (self.global_best_position[i] - particle.position[i]) particle.velocity[i] = int(particle.velocity[i]) if particle.velocity[i] < 0: particle.velocity[i] = 0 elif particle.velocity[i] > self.num_customers - 1: particle.velocity[i] = self.num_customers - 1 particle.position = [(particle.position[i] + particle.velocity[i]) % (self.num_customers + 1) for i in range(len(particle.position))] def update_global_best(self): for particle in self.particles: if particle.best_fitness < self.global_best_fitness: self.global_best_fitness = particle.best_fitness self.global_best_position = particle.best_position.copy() def solve(self): self.initialize_particles() for _ in range(self.num_iterations): for particle in self.particles: particle.evaluate_fitness(self.distances, self.demands) self.update_global_best() self.update_particles() return self.global_best_position, self.global_best_fitness添加注释

import numpy as np import pandas as pd from sklearn.model_selection import train_test_split from keras.models import Sequential from keras.layers import Dense from pyswarm import pso import matplotlib.pyplot as plt from sklearn.preprocessing import StandardScaler file = "zhong.xlsx" data = pd.read_excel(file) #reading file X=np.array(data.loc[:,'种植密度':'有效积温']) y=np.array(data.loc[:,'产量']) y.shape=(185,1) # 将数据集分为训练集和测试集 X_train, X_test, y_train, y_test = train_test_split(X,y, test_size=0.25, random_state=10) SC=StandardScaler() X_train=SC.fit_transform(X_train) X_test=SC.fit_transform(X_test) y_train=SC.fit_transform(y_train) y_test=SC.fit_transform(y_test) print("X_train.shape:", X_train.shape) print("X_test.shape:", X_test.shape) print("y_train.shape:", y_train.shape) print("y_test.shape:", y_test.shape) # 定义BP神经网络模型 def nn_model(X): model = Sequential() model.add(Dense(8, input_dim=X_train.shape[1], activation='relu')) model.add(Dense(12, activation='relu')) model.add(Dense(1)) model.compile(loss='mean_squared_error', optimizer='adam') return model # 定义适应度函数 def fitness_func(X): model = nn_model(X) model.fit(X_train, y_train, epochs=60, verbose=2) score = model.evaluate(X_test, y_test, verbose=2) return score # 定义变量的下限和上限 lb = [5, 5] ub = [30, 30] # 利用PySwarm库实现改进的粒子群算法来优化BP神经网络预测模型 result = pso(fitness_func, lb, ub) # 输出最优解和函数值 print('最优解:', result[0]) print('最小函数值:', result[1]) # 绘制预测值和真实值对比图 model = nn_model(X) model.fit(X_train, y_train, epochs=60, verbose=0) y_pred = model.predict(X_test) y_true = SC.inverse_transform(y_test) y_pred=SC.inverse_transform(y_pred) plt.figure() plt.plot(y_true,"bo-",label = '真实值') plt.plot(y_pred,"ro-", label = '预测值') plt.title('神经网络预测展示') plt.xlabel('序号') plt.ylabel('产量') plt.legend(loc='upper right') plt.show() # 绘制损失函数曲线图 model = nn_model(X) history = model.fit(X_train, y_train, epochs=60, validation_data=(X_test, y_test), verbose=2) plt.plot(history.history['loss'], label='train') plt.plot(history.history['val_loss'], label='test') plt.legend() plt.show()

最新推荐

recommend-type

基于PSO_LSTM模型的变压器油中溶解气体浓度预测方法_刘可真.pdf

粒子群优化算法(PSO)与长短期记忆网络(LSTM)的变压 器油中溶解气体浓度预测方法。首先该模型以油中溶解的7 种特征气体浓度序列作为可视输入;然后通过使用粒子群优化 算法对长短期记忆网络中相关超参数进行...
recommend-type

Java开发案例-springboot-66-自定义starter-源代码+文档.rar

Java开发案例-springboot-66-自定义starter-源代码+文档.rar Java开发案例-springboot-66-自定义starter-源代码+文档.rar Java开发案例-springboot-66-自定义starter-源代码+文档.rar Java开发案例-springboot-66-自定义starter-源代码+文档.rar Java开发案例-springboot-66-自定义starter-源代码+文档.rar Java开发案例-springboot-66-自定义starter-源代码+文档.rar
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

MATLAB柱状图在信号处理中的应用:可视化信号特征和频谱分析

![matlab画柱状图](https://img-blog.csdnimg.cn/3f32348f1c9c4481a6f5931993732f97.png) # 1. MATLAB柱状图概述** MATLAB柱状图是一种图形化工具,用于可视化数据中不同类别或组的分布情况。它通过绘制垂直条形来表示每个类别或组中的数据值。柱状图在信号处理中广泛用于可视化信号特征和进行频谱分析。 柱状图的优点在于其简单易懂,能够直观地展示数据分布。在信号处理中,柱状图可以帮助工程师识别信号中的模式、趋势和异常情况,从而为信号分析和处理提供有价值的见解。 # 2. 柱状图在信号处理中的应用 柱状图在信号处理
recommend-type

HSV转为RGB的计算公式

HSV (Hue, Saturation, Value) 和 RGB (Red, Green, Blue) 是两种表示颜色的方式。下面是将 HSV 转换为 RGB 的计算公式: 1. 将 HSV 中的 S 和 V 值除以 100,得到范围在 0~1 之间的值。 2. 计算色相 H 在 RGB 中的值。如果 H 的范围在 0~60 或者 300~360 之间,则 R = V,G = (H/60)×V,B = 0。如果 H 的范围在 60~120 之间,则 R = ((120-H)/60)×V,G = V,B = 0。如果 H 的范围在 120~180 之间,则 R = 0,G = V,B =
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

MATLAB柱状图在数据分析中的作用:从可视化到洞察

![MATLAB柱状图在数据分析中的作用:从可视化到洞察](https://img-blog.csdnimg.cn/img_convert/1a36558cefc0339f7836cca7680c0aef.png) # 1. MATLAB柱状图概述** 柱状图是一种广泛用于数据可视化的图表类型,它使用垂直条形来表示数据中不同类别或组别的值。在MATLAB中,柱状图通过`bar`函数创建,该函数接受数据向量或矩阵作为输入,并生成相应的高度条形。 柱状图的优点在于其简单性和易于理解性。它们可以快速有效地传达数据分布和组别之间的比较。此外,MATLAB提供了广泛的定制选项,允许用户调整条形颜色、
recommend-type

已知自动控制原理中通过更高的频率特征来评估切割频率和库存——相位稳定。确定封闭系统的稳定性。求Wcp 和ψ已知W(p)=30•(0.1p+1)•(12.5p+1)/p•(10p+1)•(0.2p+1)•(p+1)

根据相位稳定的定义,我们需要找到一个频率 Wcp,使得相位满足 -ψ = -180°,即 ψ = 180°。此时系统的相位裕度为 0°,系统处于边缘稳定状态。 首先,我们需要将 W(p) 表示成极点和零点的形式。将分母和分子分别因式分解,得到: W(p) = 30 • (0.1p+1) • (12.5p+1) / [p • (10p+1) • (0.2p+1) • (p+1)] = 375p/(p+1) - 3750/(10p+1) + 750p/(0.2p+1) - 3750p/(10p+1) + 150p/(p+1) + 30 因此,系统的极点为 -1、-0.1、-0.2、