Farmer John 正在将他的 N 头奶⽜ ( 1≤N≤105 ) 排成⼀排,⽅便地编号为 1…N ,以便拍照。 最初,奶⽜从左到右按照 a1,a2,...,aN 的顺序排列 。Farmer John 的⽬标是按照 b1,...,bN 从左 到右的顺序排列奶⽜。为此,他可以对排序进⾏⼀系列修改。每个修改都包括选择⼀头奶⽜ 并将其向左移动⼀些位置。 请计算农⺠约翰按所需顺序排列奶⽜所需的最少修改次数

时间: 2023-06-01 21:03:56 浏览: 237
题目翻译 农夫 John 正在将他的 $N$ 头奶牛 $(1\leq N\leq 10^5)$ 排成一排,方便地编号为 $1…N$,以便拍照。最初,奶牛从左到右按照 $a_1,a_2,...,a_N$ 的顺序排列。农夫 John 的目标是按照 $b_1,...,b_N$ 从左到右的顺序排列奶牛。为此,他可以对排序进行一系列修改。每个修改都包括选择一头奶牛并将其向左移动一些位置。请计算农夫 John 按所需顺序排列奶牛所需的最少修改次数。 题解 这道题其实是一道经典的贪心问题——交换相邻逆序对。 首先,我们可以发现,对于第 $i$ 头奶牛,它需要向左移动的距离 $d_i$ 为 $b_i$ 在 $a$ 数组中的下标减去 $i$。也就是说,对于每头奶牛,我们都可以知道它需要向左移动的距离。 但是,我们并不需要真的进行移动,只需要记录每头奶牛需要向左移动的距离 $d_i$,并计算出它们的交换次数即可。 因为我们只能交换相邻两个位置上的奶牛,所以我们可以从左到右遍历 $b$ 数组,对于每个 $b_i$,我们找到它在 $a$ 数组中的位置 $j$,并把 $a_j$ 与 $a_{j-1}$ 交换,直到 $a_j$ 到达 $i$ 的位置。 为什么这个方法是正确的呢?因为我们每次都是交换相邻逆序对,所以每次交换后,我们就让一个相邻逆序对消失了。因此,我们最多只需要进行 $N$ 次交换。 代码
相关问题

有 N(1≤N≤105)头奶牛,每头奶牛的品种是更赛牛(Guernsey)或荷斯坦牛(Holstein)之一。她们沿水平方向排成一行,奶牛们占据的位置编号为 1…N。 由于奶牛们都饿了,FJ 决定在 1…N 中的某些位置上种植草地。更赛牛和荷斯坦牛喜欢不同类型的草,所以如果 Farmer John 决定在某个位置种草,他必须选择种植更赛牛喜欢的草或荷斯坦牛喜欢的草——他不能在同一个位置同时种两种草。种植的每一片草地都可以喂饱数量不限的相应品种的奶牛。 每头奶牛愿意移动至多 K (0≤K≤N−1)个位置以前往一个草地。求出喂饱所有奶牛所需种植的最小草地数量。此外,输出一种使用最小草地数量喂饱所有奶牛的种植方案。任何满足上述条件的方案均视为正确。

N 头奶牛沿水平方向排成一行,每头奶牛的品种是更赛牛或荷斯坦牛之一。FJ 要在 1…N 之间的某些位置上种植草地,但是每头奶牛只喜欢特定品种的草。每头奶牛愿意移动至多 K 个位置到达一个草地。求出喂饱所有奶牛所需的最小草地数量,并输出一种使用最少草地数量的喂饱所有奶牛的方案。

题目描述   Farmer John有n(1≤n≤2000)个美味的食物,他想卖掉它们来赚钱给奶牛。这些食物放在一些箱子里,它们有些有趣的特性:   (1)这些食物被编号为1-n,每一天Farmer John可以从这排箱子的头部或者尾部取出食物去卖;   (2)这些食物放得越久,年龄越大,价值越大,食物i有一个初始的价值v(i);   (3)放了a天后,年龄为a,食物最终的价值为v(i)×a。 给定每一个食物的初始价值v(i),请求出FJ卖掉它们后可以获得的最大价值,第一天出售的食物年龄为1,此后每增加一天食物的年龄就增加1。 输入格式   第一行,一个整数n;   第2×n+1行,每行为食物i的初始价值v(i)。 输出格式   一行,为FJ最终可以获得的最大价值。给出完整的c++代码

以下是C++代码实现: ``` #include<iostream> #include<cstring> using namespace std; const int N = 2010; int n; int v[N]; int dp[N][N]; int main() { cin >> n; for(int i = 1; i <= n; i++) cin >> v[i]; memset(dp, 0xc0, sizeof dp); // 将dp数组初始化为负无穷 for(int i = 1; i <= n; i++) dp[i][i] = n * v[i]; // 初始化dp数组 for(int len = 2; len <= n; len++) // 枚举区间长度 for(int l = 1; l + len - 1 <= n; l++) // 枚举区间左端点 { int r = l + len - 1; // 区间右端点 dp[l][r] = max(dp[l + 1][r] + v[l] * (n - len + 1), dp[l][r - 1] + v[r] * (n - len + 1)); } cout << dp[1][n] << endl; return 0; } ``` 算法思路: 这是一道区间DP的题目,我们可以用dp[l][r]表示区间[l, r]内能够获得的最大价值。因为每天卖出的食物年龄都会增加1,因此我们可以用n - len + 1表示第一天卖出的食物年龄。 状态转移方程为:dp[l][r] = max(dp[l + 1][r] + v[l] * (n - len + 1), dp[l][r - 1] + v[r] * (n - len + 1)),表示在区间[l, r - 1]中卖掉一件食物或在区间[l + 1, r]中卖掉一件食物,取最大值即可。 时间复杂度为O(n ^ 2)。
阅读全文

相关推荐

Every year the cows hold an event featuring a peculiar version of hopscotch that involves carefully jumping from rock to rock in a river. The excitement takes place on a long, straight river with a rock at the start and another rock at the end, L units away from the start (1 ≤ L ≤ 1,000,000,000). Along the river between the starting and ending rocks, N (0 ≤ N ≤ 50,000) more rocks appear, each at an integral distance Di from the start (0 < Di < L). To play the game, each cow in turn starts at the starting rock and tries to reach the finish at the ending rock, jumping only from rock to rock. Of course, less agile cows never make it to the final rock, ending up instead in the river. Farmer John is proud of his cows and watches this event each year. But as time goes by, he tires of watching the timid cows of the other farmers limp across the short distances between rocks placed too closely together. He plans to remove several rocks in order to increase the shortest distance a cow will have to jump to reach the end. He knows he cannot remove the starting and ending rocks, but he calculates that he has enough resources to remove up to M rocks (0 ≤ M ≤ N). FJ wants to know exactly how much he can increase the shortest distance *before* he starts removing the rocks. Help Farmer John determine the greatest possible shortest distance a cow has to jump after removing the optimal set of M rocks. Input Line 1: Three space-separated integers: L, N, and M Lines 2..N+1: Each line contains a single integer indicating how far some rock is away from the starting rock. No two rocks share the same position. Output Line 1: A single integer that is the maximum of the shortest distance a cow has to jump after removing M rocks Sample Inputcopy Outputcopy 25 5 2 2 14 11 21 17 4 Hint Before removing any rocks, the shortest jump was a jump of 2 from 0 (the start) to 2. After removing the rocks at 2 and 14, the shortest required jump is a jump of 4 (from 17 to 21 or from 21 to 25).

最新推荐

recommend-type

基于C++的农夫过河问题算法设计与实现方法

我们还定义了一个函数is_farmer_crossed来判断农夫是否已经过河,is_wolf_crossed、is_cabbage_crossed和is_goat_crossed来判断狼、白菜和羊是否已经过河。最后,我们使用了广度优先搜索算法来解决农夫过河问题,并...
recommend-type

【java毕业设计】应急救援物资管理系统源码(springboot+vue+mysql+说明文档).zip

项目经过测试均可完美运行! 环境说明: 开发语言:java jdk:jdk1.8 数据库:mysql 5.7+ 数据库工具:Navicat11+ 管理工具:maven 开发工具:idea/eclipse
recommend-type

基于java的音乐网站答辩PPT.pptx

基于java的音乐网站答辩PPT.pptx
recommend-type

基于Flexsim的公路交通仿真系统.zip

基于Flexsim软件开发的仿真系统,可供参考学习使用
recommend-type

weixin073智慧旅游平台开发微信小程序+ssm后端毕业源码案例设计.zip

weixin073智慧旅游平台开发微信小程序+ssm后端毕业源码案例设计 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。
recommend-type

Android圆角进度条控件的设计与应用

资源摘要信息:"Android-RoundCornerProgressBar" 在Android开发领域,一个美观且实用的进度条控件对于提升用户界面的友好性和交互体验至关重要。"Android-RoundCornerProgressBar"是一个特定类型的进度条控件,它不仅提供了进度指示的常规功能,还具备了圆角视觉效果,使其更加美观且适应现代UI设计趋势。此外,该控件还可以根据需求添加图标,进一步丰富进度条的表现形式。 从技术角度出发,实现圆角进度条涉及到Android自定义控件的开发。开发者需要熟悉Android的视图绘制机制,包括但不限于自定义View类、绘制方法(如`onDraw`)、以及属性动画(Property Animation)。实现圆角效果通常会用到`Canvas`类提供的画图方法,例如`drawRoundRect`函数,来绘制具有圆角的矩形。为了添加图标,还需考虑如何在进度条内部适当地放置和绘制图标资源。 在Android Studio这一集成开发环境(IDE)中,自定义View可以通过继承`View`类或者其子类(如`ProgressBar`)来完成。开发者可以定义自己的XML布局文件来描述自定义View的属性,比如圆角的大小、颜色、进度值等。此外,还需要在Java或Kotlin代码中处理用户交互,以及进度更新的逻辑。 在Android中创建圆角进度条的步骤通常如下: 1. 创建自定义View类:继承自`View`类或`ProgressBar`类,并重写`onDraw`方法来自定义绘制逻辑。 2. 定义XML属性:在资源文件夹中定义`attrs.xml`文件,声明自定义属性,如圆角半径、进度颜色等。 3. 绘制圆角矩形:在`onDraw`方法中使用`Canvas`的`drawRoundRect`方法绘制具有圆角的进度条背景。 4. 绘制进度:利用`Paint`类设置进度条颜色和样式,并通过`drawRect`方法绘制当前进度覆盖在圆角矩形上。 5. 添加图标:根据自定义属性中的图标位置属性,在合适的时机绘制图标。 6. 通过编程方式更新进度:在Activity或Fragment中,使用自定义View的方法来编程更新进度值。 7. 实现动画:如果需要,可以通过Android的动画框架实现进度变化的动画效果。 标签中的"Android开发"表明,这些知识点和技能主要面向的是Android平台的开发人员。对于想要在Android应用中实现自定义圆角进度条的开发者来说,他们需要具备一定的Android编程基础,并熟悉相关的开发工具和库。 在"RoundCornerProgressBar-master"压缩包文件的文件名称列表中,我们可以推测这个资源包含了完整的项目代码,包括源代码、资源文件、布局文件、可能的示例代码以及必要的文档说明。开发者通过下载和解压缩这个包,可以得到一个完整的项目,从而可以直接查看代码实现细节,或是将其集成到自己的项目中。 最终,对于希望使用"Android-RoundCornerProgressBar"的开发者,关键在于理解自定义View的创建过程、圆角图形的绘制技术,以及如何在Android应用中集成和使用这些自定义控件。通过上述知识点的学习和实践,开发者能够掌握在Android应用中创建美观且功能丰富的用户界面所需的技能。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【R语言lattice包实战】:从案例到技巧,图形制作不再难

![R语言数据包使用详细教程lattice](http://pfister.ee.duke.edu/images/Nguyen-arxiv11-fig2.jpg) # 1. R语言与lattice包概述 R语言作为统计分析领域内广泛应用的编程语言,凭借其强大的图形功能而受到数据科学家的青睐。在R语言中,lattice包是绘图系统的重要组成部分,它基于trellis图形系统设计,能够高效地创建多变量条件图。本章节将引导读者对lattice包有一个初步的了解,并概述其功能和应用范围。 ## 1.1 R语言中的图形系统 R语言提供了一系列的图形系统,基础图形系统(base graphics)是其
recommend-type

输入正整数n.打出长度为n的菱形

好的,以下是打印菱形的代码实现: ``` #include <stdio.h> #include <stdlib.h> int main() { int n, i, j; printf("请输入一个正整数n:"); scanf("%d", &n); if(n % 2 == 0) { // 如果输入的n是偶数,将其加1变成奇数 n++; } for(i = 0; i < n / 2 + 1; i++) { for(j = 0; j < n / 2 - i; j++) { printf(
recommend-type

mui框架实现带侧边栏的响应式布局

资源摘要信息:"mui实现简单布局.zip" mui是一个基于HTML5的前端框架,它采用了类似Bootstrap的语义化标签,但是专门为移动设备优化。该框架允许开发者使用Web技术快速构建高性能、可定制、跨平台的移动应用。此zip文件可能包含了一个用mui框架实现的简单布局示例,该布局具有侧边栏,能够实现首页内容的切换。 知识点一:mui框架基础 mui框架是一个轻量级的前端库,它提供了一套响应式布局的组件和丰富的API,便于开发者快速上手开发移动应用。mui遵循Web标准,使用HTML、CSS和JavaScript构建应用,它提供了一个类似于jQuery的轻量级库,方便DOM操作和事件处理。mui的核心在于其强大的样式表,通过CSS可以实现各种界面效果。 知识点二:mui的响应式布局 mui框架支持响应式布局,开发者可以通过其提供的标签和类来实现不同屏幕尺寸下的自适应效果。mui框架中的标签通常以“mui-”作为前缀,如mui-container用于创建一个宽度自适应的容器。mui中的布局类,比如mui-row和mui-col,用于创建灵活的栅格系统,方便开发者构建列布局。 知识点三:侧边栏实现 在mui框架中实现侧边栏可以通过多种方式,比如使用mui sidebar组件或者通过布局类来控制侧边栏的位置和宽度。通常,侧边栏会使用mui的绝对定位或者float浮动布局,与主内容区分开来,并通过JavaScript来控制其显示和隐藏。 知识点四:首页内容切换功能 实现首页可切换的功能,通常需要结合mui的JavaScript库来控制DOM元素的显示和隐藏。这可以通过mui提供的事件监听和动画效果来完成。开发者可能会使用mui的开关按钮或者tab标签等组件来实现这一功能。 知识点五:mui的文件结构 该压缩包文件包含的目录结构说明了mui项目的基本结构。其中,"index.html"文件是项目的入口文件,它将展示整个应用的界面。"manifest.json"文件是应用的清单文件,它在Web应用中起到了至关重要的作用,定义了应用的名称、版本、图标和其它配置信息。"css"文件夹包含所有样式表文件,"unpackage"文件夹可能包含了构建应用后的文件,"fonts"文件夹存放字体文件,"js"文件夹则是包含JavaScript代码的地方。 知识点六:mui的打包和分发 mui框架支持项目的打包和分发,开发者可以使用其提供的命令行工具来打包项目,生成可以部署到服务器的静态资源。这一步通常涉及到资源的压缩、合并和优化。打包后,开发者可以将项目作为一个Web应用分发,也可以将其打包为原生应用,比如通过Cordova、PhoneGap等工具打包成可在iOS或Android设备上安装的应用。 知识点七:mui的兼容性和性能优化 mui框架对老旧设备也做了兼容性考虑,保证应用在低端设备上也有较好的性能表现。性能优化方面,mui提供了多种工具和最佳实践,例如使用懒加载、避免全局变量污染、减少DOM操作等策略来提高应用的运行速度和用户体验。 以上内容是根据标题、描述以及文件名称列表推测出的关于mui实现简单布局的知识点。开发者可以通过分析和实践上述知识点来更好地理解和运用mui框架,从而构建出高效且用户友好的移动应用界面。