YOLO的算法核心是什么?能列举代码?
时间: 2024-06-10 13:06:52 浏览: 175
YOLO的算法核心是基于深度学习神经网络的目标检测方法。其核心代码包括网络架构和训练过程,具体代码现在已经更新到了YOLOv5版本。这里给出一部分的代码作为参考:
```
from models.yolo import Model
from utils.general import (
check_img_size, non_max_suppression, apply_classifier, scale_coords,
xyxy2xywh, plot_one_box, strip_optimizer, set_logging)
...
class Detect(object):
def __init__(self, source, weights, imgsz=640, conf_thres=0.4, iou_thres=0.5, augment=False, device=''):
...
# Initialize model
model = Model(cfg['arch'], ch=cfg['ch'], nc=nc, anchors=anchors, gd=cfg['gr'], gw=cfg['gw']).to(device)
# Load weights
if weights.endswith('.pt'): # pytorch format
model.load_state_dict(torch.load(weights, map_location=device)['model'].float().state_dict())
else: # darknet format
_ = load_darknet_weights(model, weights)
# Eval mode
model.eval()
# Fuse Conv2d + BatchNorm2d layers
# model.fuse()
# Set Dataloader
vid_path, vid_writer = None, None
if source.isnumeric(): # 支持采集卡直接读取图像流
...
```
阅读全文