C++ opencv 黑白图像识别

时间: 2024-01-21 17:03:22 浏览: 36
以下是使用C++和OpenCV进行黑白图像识别的步骤: 1. 导入必要的库和模块: ```cpp #include <opencv2/opencv.hpp> ``` 2. 读取图像: ```cpp cv::Mat image = cv::imread("image.jpg", cv::IMREAD_COLOR); ``` 3. 将图像转换为灰度图像: ```cpp cv::Mat grayImage; cv::cvtColor(image, grayImage, cv::COLOR_BGR2GRAY); ``` 4. 对灰度图像进行二值化处理: ```cpp cv::Mat binaryImage; cv::threshold(grayImage, binaryImage, 128, 255, cv::THRESH_BINARY); ``` 5. 查找图像中的轮廓: ```cpp std::vector<std::vector<cv::Point>> contours; cv::findContours(binaryImage, contours, cv::RETR_EXTERNAL, cv::CHAIN_APPROX_SIMPLE); ``` 6. 找到最大轮廓: ```cpp int maxContourIndex = 0; double maxContourArea = 0.0; for (int i = 0; i < contours.size(); i++) { double contourArea = cv::contourArea(contours[i]); if (contourArea > maxContourArea) { maxContourArea = contourArea; maxContourIndex = i; } } ``` 7. 绘制最大轮廓的边界框: ```cpp cv::Rect boundingRect = cv::boundingRect(contours[maxContourIndex]); cv::rectangle(image, boundingRect, cv::Scalar(0, 255, 0), 2); ``` 8. 显示结果图像: ```cpp cv::imshow("Result", image); cv::waitKey(0); ``` 这些步骤将读取一张彩色图像,将其转换为灰度图像,然后进行二值化处理。接下来,找到图像中的轮廓,并找到最大轮廓。最后,绘制最大轮廓的边界框并显示结果图像。

相关推荐

最新推荐

recommend-type

OpenCV识别图像上的线条轨迹

主要为大家详细介绍了OpenCV识别图像上的线条轨迹,文中示例代码介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
recommend-type

Python Opencv实现图像轮廓识别功能

主要为大家详细介绍了Python Opencv实现图像轮廓识别功能,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
recommend-type

opencv3/C++图像边缘提取方式

今天小编就为大家分享一篇opencv3/C++图像边缘提取方式,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
recommend-type

opencv中图像叠加/图像融合/按位操作的实现

主要介绍了opencv中图像叠加/图像融合/按位操作的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
recommend-type

OpenCV实现图像校正功能

主要为大家详细介绍了OpenCV实现图像校正功能,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

MATLAB柱状图在信号处理中的应用:可视化信号特征和频谱分析

![matlab画柱状图](https://img-blog.csdnimg.cn/3f32348f1c9c4481a6f5931993732f97.png) # 1. MATLAB柱状图概述** MATLAB柱状图是一种图形化工具,用于可视化数据中不同类别或组的分布情况。它通过绘制垂直条形来表示每个类别或组中的数据值。柱状图在信号处理中广泛用于可视化信号特征和进行频谱分析。 柱状图的优点在于其简单易懂,能够直观地展示数据分布。在信号处理中,柱状图可以帮助工程师识别信号中的模式、趋势和异常情况,从而为信号分析和处理提供有价值的见解。 # 2. 柱状图在信号处理中的应用 柱状图在信号处理
recommend-type

前端深拷贝 和浅拷贝有哪些方式,你在哪里使用过

前端深拷贝和浅拷贝的方式有很多,下面列举几种常用的方式: 深拷贝: 1. JSON.parse(JSON.stringify(obj)),该方法可以将对象序列化为字符串,再将字符串反序列化为新的对象,从而实现深拷贝。但是该方法有一些限制,例如无法拷贝函数、RegExp等类型的数据。 2. 递归拷贝,即遍历对象的每个属性并进行拷贝,如果属性值是对象,则递归进行拷贝。 3. 使用第三方库如lodash、jQuery等提供的深拷贝方法。 浅拷贝: 1. Object.assign(target, obj1, obj2, ...),该方法可以将源对象的属性浅拷贝到目标对象中,如果有相同的属性,则会
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。