写一个Diffusion-limited Aggregation模型的代码
时间: 2023-03-15 09:01:38 浏览: 134
答:以下是一个Diffusion-limited Aggregation模型的Python代码:import numpy as np
import matplotlib.pyplot as plt
# Set the number of particles
n=1000
# Set the diffusion constant
D=1.0
# Generate the initial positions of the particles
x=np.random.uniform(0,1,n)
y=np.random.uniform(0,1,n)
# Set the maximum time and the timestep
tmax=100
dt=0.01
# Set the size of the aggregation and the aggregation rate
R=0.05
k=0.3
# Set the maximum number of steps
nmax=int(tmax/dt)
# Initialize an array to store the particle positions
xsave=np.zeros((nmax,n))
ysave=np.zeros((nmax,n))
# Save the initial positions
xsave[0,:]=x
ysave[0,:]=y
# Perform the diffusion-limited aggregation
for i in range(nmax-1):
# Calculate the distance between particles
r=np.sqrt((x[:,None]-x[None,:])**2 + (y[:,None]-y[None,:])**2)
# Set the distance between particles to a large value if they are the same particle
r[np.diag_indices(n)]=np.inf
# Calculate the distance between particles and the aggregation
d=np.sqrt((x-0.5)**2 + (y-0.5)**2)
# Calculate the diffusion coefficient
Dx=D*(1-k*(r<R))
Dy=D*(1-k*(r<R))
# Calculate the rate of aggregation
kx=k*(d<R)
ky=k*(d<R)
# Calculate the movement of the particles
dx=np.sum(Dx,axis=1)-kx*(x-0.5)
dy=np.sum(Dy,axis=1)-ky*(y-0.5)
x+=dx*dt
y+=dy*dt
# Save the particle positions
xsave[i+1,:]=x
ysave[i+1,:]=y
# Plot the results
plt.scatter(xsave[-1,:],ysave[-1,:])
plt.show()
阅读全文