给出rtt路径规划算法 matlab代码
时间: 2023-09-03 17:09:25 浏览: 73
以下是一个简单的RTT路径规划算法的Matlab代码:
```matlab
function [path] = rtt(start, goal, obstacles, max_iter, step_size)
% 初始化根节点
tree = [start, 0, 0];
% 迭代max_iter次
for i = 1:max_iter
% 随机采样一个点
sample = [rand()*10, rand()*10];
% 找到树中距离采样点最近的节点
[closest_node, closest_index] = closest(tree(:,1:2), sample);
% 从最近的节点向采样点移动一个步长
new_node = move(closest_node, sample, step_size);
% 如果新节点没有碰到障碍物,则将其添加到树中
if ~collides(new_node, obstacles)
new_cost = tree(closest_index, 3) + norm(new_node - closest_node);
tree = [tree; new_node, closest_index, new_cost];
% 如果新节点足够接近终点,则直接返回路径
if norm(new_node - goal) < step_size
path = getPath(tree, size(tree, 1));
return
end
end
end
% 如果达到最大迭代次数,则返回最接近终点的节点所在路径
[~, goal_index] = closest(tree(:,1:2), goal);
path = getPath(tree, goal_index);
end
function [closest_node, closest_index] = closest(nodes, sample)
% 找到距离采样点最近的节点
distances = vecnorm(nodes - sample, 2, 2);
[~, closest_index] = min(distances);
closest_node = nodes(closest_index,:);
end
function [new_node] = move(start, end_, step_size)
% 从起始点向终点移动一个步长
direction = (end_ - start) / norm(end_ - start);
new_node = start + direction * step_size;
end
function [path] = getPath(tree, goal_index)
% 从终点节点回溯到起点,构建路径
path = [tree(goal_index,1:2)];
parent_index = tree(goal_index,3);
while parent_index ~= 0
path = [tree(parent_index,1:2); path];
parent_index = tree(parent_index,3);
end
end
function [collision] = collides(node, obstacles)
% 判断节点是否碰到障碍物
collision = 0;
for i = 1:size(obstacles,1)
if norm(node - obstacles(i,:)) < 0.5
collision = 1;
return
end
end
end
```
这个算法实现了一个基本的RTT路径规划算法,可以在二维空间中规划路径,避开障碍物,最终到达目标点。
阅读全文