np.arange(3,15,2)创建的数组的具体描述

时间: 2023-11-27 11:54:05 浏览: 31
`np.arange(3,15,2)` 创建的数组是一个一维数组,包含从 3 开始到 15 (不包括 15)之间的所有偶数元素。具体来说,数组包含以下元素:3, 5, 7, 9, 11, 13。数组中相邻元素之间的间隔为 2。可以通过以下代码来验证: ```python import numpy as np arr = np.arange(3, 15, 2) print(arr) # 输出:[ 3 5 7 9 11 13] ```
相关问题

np.assarray

**NumPy中的ndarray是一个用于存储同类型元素的N维数组对象,它是NumPy库的核心组件之一**。下面是一些关于ndarray的详细信息: 1. **创建ndarray**: 可以通过多种方式创建ndarray,包括从Python结构(如列表、元组)转换,使用NumPy原生函数(如arange、ones、zeros等),从磁盘读取数据,通过字符串或缓冲区从原始字节创建,以及使用特殊库函数(例如random)。 2. **访问和修改ndarray**: 可以通过索引或切片来访问和修改ndarray的内容,就像在常规Python容器中一样。不过,ndarray支持多维度的数据访问和操作。 3. **属性和方法**: 每个ndarray都有与之关联的shape(定义每个维度的大小)、dtype(指定元素类型)和其他属性,这些属性描述了数组的结构和内容。 4. **性能优势**: 与标准Python列表不同,ndarray中的元素直接以原始数据形式存储,这减少了内存开销并提高了数值计算的效率。 5. **维度和形状**: ndarray的维度和每个维度上的元素数量由shape属性决定,它是由非负整数组成的tuple(元组),用来指定每个维度的大小。 掌握ndarray的使用是理解和运用NumPy库的关键。由于NumPy在科学计算和数据分析领域的广泛应用,对ndarray的理解将有助于在这些领域中进行高效的工作。

loop = tqdm.tqdm(list(np.arange(-4, -2, 0.2))) # 设置相机位置和角度 renderer.transform.set_eyes_from_angles(camera_distance, elevation, 45) # 创建gif文件 writer = imageio.get_writer(os.path.join(args.output_dir, 'bluring.gif'), mode='I') # 多次渲染,设置不同的 gamma 和 sigma 参数,从而产生不同程度的模糊效果 for num, gamma_pow in enumerate(loop): # rest mesh to initial state mesh.reset_() # 重置初始态 renderer.set_gamma(10**gamma_pow) # renderer.set_sigma(10**(gamma_pow - 1)) loop.set_description('Drawing blurring') images = renderer.render_mesh(mesh, mode='rgb') image = images.numpy()[0].transpose((1, 2, 0)) # [image_size, image_size, RGB] writer.append_data((255*image).astype(np.uint8)) writer.close()这个loop里面的内容是什么

`loop` 是一个 `tqdm` 迭代器,用于迭代 `np.arange(-4, -2, 0.2)` 数组中的每个元素,并在控制台界面上显示进度条。其中,`np.arange(-4, -2, 0.2)` 表示从-4到-2之间,以0.2为步长,生成一个等差数列。在每次迭代中,`gamma_pow` 的值会更新为下一个元素的值,同时 `num` 也会自增1。`loop.set_description('Drawing blurring')` 用于设置进度条的描述信息,即当前正在进行的操作是 'Drawing blurring'。

相关推荐

注释下列代码import numpy as np import matplotlib.pyplot as plt def plot_radar(data): ''' the first column of the data is the cluster name; the second column is the number of each cluster; the last are those to describe the center of each cluster. ''' kinds = data.iloc[:, 0] labels = data.iloc[:, 2:].columns centers = pd.concat([data.iloc[:, 2:], data.iloc[:,2]], axis=1) centers = np.array(centers) n = len(labels) angles = np.linspace(0, 2*np.pi, n, endpoint=False) angles = np.concatenate((angles, [angles[0]])) fig = plt.figure() ax = fig.add_subplot(111, polar=True) # 设置坐标为极坐标 # 画若干个五边形 floor = np.floor(centers.min()) # 大于最小值的最大整数 ceil = np.ceil(centers.max()) # 小于最大值的最小整数 for i in np.arange(floor, ceil + 0.5, 0.5): ax.plot(angles, [i] * (n + 1), '--', lw=0.5 , color='black') # 画不同客户群的分割线 for i in range(n): ax.plot([angles[i], angles[i]], [floor, ceil], '--', lw=0.5, color='black') # 画不同的客户群所占的大小 for i in range(len(kinds)): ax.plot(angles, centers[i], lw=2, label=kinds[i]) #ax.fill(angles, centers[i]) ax.set_thetagrids(angles * 180 / np.pi, labels) # 设置显示的角度,将弧度转换为角度 plt.legend(loc='lower right', bbox_to_anchor=(1.5, 0.0)) # 设置图例的位置,在画布外 ax.set_theta_zero_location('N') # 设置极坐标的起点(即0°)在正北方向,即相当于坐标轴逆时针旋转90° ax.spines['polar'].set_visible(False) # 不显示极坐标最外圈的圆 ax.grid(False) # 不显示默认的分割线 ax.set_yticks([]) # 不显示坐标间隔 plt.show() plot_radar(data)

详细解释一下这段代码,每一句都要进行注解:def get_image_pairs_shortlist(fnames, sim_th = 0.6, # should be strict min_pairs = 20, exhaustive_if_less = 20, device=torch.device('cpu')): num_imgs = len(fnames) if num_imgs <= exhaustive_if_less: return get_img_pairs_exhaustive(fnames) model = timm.create_model('tf_efficientnet_b7', checkpoint_path='/kaggle/input/tf-efficientnet/pytorch/tf-efficientnet-b7/1/tf_efficientnet_b7_ra-6c08e654.pth') model.eval() descs = get_global_desc(fnames, model, device=device) #这段代码使用 PyTorch 中的 torch.cdist 函数计算两个矩阵之间的距离,其中参数 descs 是一个矩阵,表示一个数据集中的所有样本的特征向量。函数将计算两个矩阵的 p 范数距离,即对于矩阵 A 和 B,其 p 范数距离为: #dist_{i,j} = ||A_i - B_j||_p #其中 i 和 j 分别表示矩阵 A 和 B 中的第 i 和 j 行,||.||_p 表示 p 范数。函数的返回值是一个矩阵,表示所有样本之间的距离。 # detach() 和 cpu() 方法是为了将计算结果从 GPU 转移到 CPU 上,并将其转换为 NumPy 数组。最终的结果将会是一个 NumPy 数组。 dm = torch.cdist(descs, descs, p=2).detach().cpu().numpy() # removing half mask = dm <= sim_th total = 0 matching_list = [] ar = np.arange(num_imgs) already_there_set = [] for st_idx in range(num_imgs-1): mask_idx = mask[st_idx] to_match = ar[mask_idx] if len(to_match) < min_pairs: to_match = np.argsort(dm[st_idx])[:min_pairs] for idx in to_match: if st_idx == idx: continue if dm[st_idx, idx] < 1000: matching_list.append(tuple(sorted((st_idx, idx.item())))) total+=1 matching_list = sorted(list(set(matching_list))) return matching_list

最新推荐

recommend-type

基于STM32控制遥控车的蓝牙应用程序

基于STM32控制遥控车的蓝牙应用程序
recommend-type

Memcached 1.2.4 版本源码包

粤嵌gec6818开发板项目Memcached是一款高效分布式内存缓存解决方案,专为加速动态应用程序和减轻数据库压力而设计。它诞生于Danga Interactive,旨在增强LiveJournal.com的性能。面对该网站每秒数千次的动态页面请求和超过七百万的用户群,Memcached成功实现了数据库负载的显著减少,优化了资源利用,并确保了更快的数据访问速度。。内容来源于网络分享,如有侵权请联系我删除。另外如果没有积分的同学需要下载,请私信我。
recommend-type

软件项目开发全过程文档资料.zip

软件项目开发全过程文档资料.zip
recommend-type

Java基础上机题-分类整理版.doc

Java基础上机题-分类整理版
recommend-type

Java-JDBC学习教程-由浅入深.doc

Java-JDBC学习教程-由浅入深
recommend-type

利用迪杰斯特拉算法的全国交通咨询系统设计与实现

全国交通咨询模拟系统是一个基于互联网的应用程序,旨在提供实时的交通咨询服务,帮助用户找到花费最少时间和金钱的交通路线。系统主要功能包括需求分析、个人工作管理、概要设计以及源程序实现。 首先,在需求分析阶段,系统明确了解用户的需求,可能是针对长途旅行、通勤或日常出行,用户可能关心的是时间效率和成本效益。这个阶段对系统的功能、性能指标以及用户界面有明确的定义。 概要设计部分详细地阐述了系统的流程。主程序流程图展示了程序的基本结构,从开始到结束的整体运行流程,包括用户输入起始和终止城市名称,系统查找路径并显示结果等步骤。创建图算法流程图则关注于核心算法——迪杰斯特拉算法的应用,该算法用于计算从一个节点到所有其他节点的最短路径,对于求解交通咨询问题至关重要。 具体到源程序,设计者实现了输入城市名称的功能,通过 LocateVex 函数查找图中的城市节点,如果城市不存在,则给出提示。咨询钱最少模块图是针对用户查询花费最少的交通方式,通过 LeastMoneyPath 和 print_Money 函数来计算并输出路径及其费用。这些函数的设计体现了算法的核心逻辑,如初始化每条路径的距离为最大值,然后通过循环更新路径直到找到最短路径。 在设计和调试分析阶段,开发者对源代码进行了严谨的测试,确保算法的正确性和性能。程序的执行过程中,会进行错误处理和异常检测,以保证用户获得准确的信息。 程序设计体会部分,可能包含了作者在开发过程中的心得,比如对迪杰斯特拉算法的理解,如何优化代码以提高运行效率,以及如何平衡用户体验与性能的关系。此外,可能还讨论了在实际应用中遇到的问题以及解决策略。 全国交通咨询模拟系统是一个结合了数据结构(如图和路径)以及优化算法(迪杰斯特拉)的实用工具,旨在通过互联网为用户提供便捷、高效的交通咨询服务。它的设计不仅体现了技术实现,也充分考虑了用户需求和实际应用场景中的复杂性。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【实战演练】基于TensorFlow的卷积神经网络图像识别项目

![【实战演练】基于TensorFlow的卷积神经网络图像识别项目](https://img-blog.csdnimg.cn/20200419235252200.png?x-oss-process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L3FxXzM3MTQ4OTQw,size_16,color_FFFFFF,t_70) # 1. TensorFlow简介** TensorFlow是一个开源的机器学习库,用于构建和训练机器学习模型。它由谷歌开发,广泛应用于自然语言
recommend-type

CD40110工作原理

CD40110是一种双四线双向译码器,它的工作原理基于逻辑编码和译码技术。它将输入的二进制代码(一般为4位)转换成对应的输出信号,可以控制多达16个输出线中的任意一条。以下是CD40110的主要工作步骤: 1. **输入与编码**: CD40110的输入端有A3-A0四个引脚,每个引脚对应一个二进制位。当你给这些引脚提供不同的逻辑电平(高或低),就形成一个四位的输入编码。 2. **内部逻辑处理**: 内部有一个编码逻辑电路,根据输入的四位二进制代码决定哪个输出线应该导通(高电平)或保持低电平(断开)。 3. **输出**: 输出端Y7-Y0有16个,它们分别与输入的编码相对应。当特定的
recommend-type

全国交通咨询系统C++实现源码解析

"全国交通咨询系统C++代码.pdf是一个C++编程实现的交通咨询系统,主要功能是查询全国范围内的交通线路信息。该系统由JUNE于2011年6月11日编写,使用了C++标准库,包括iostream、stdio.h、windows.h和string.h等头文件。代码中定义了多个数据结构,如CityType、TrafficNode和VNode,用于存储城市、交通班次和线路信息。系统中包含城市节点、交通节点和路径节点的定义,以及相关的数据成员,如城市名称、班次、起止时间和票价。" 在这份C++代码中,核心的知识点包括: 1. **数据结构设计**: - 定义了`CityType`为short int类型,用于表示城市节点。 - `TrafficNodeDat`结构体用于存储交通班次信息,包括班次名称(`name`)、起止时间(原本注释掉了`StartTime`和`StopTime`)、运行时间(`Time`)、目的地城市编号(`EndCity`)和票价(`Cost`)。 - `VNodeDat`结构体代表城市节点,包含了城市编号(`city`)、火车班次数(`TrainNum`)、航班班次数(`FlightNum`)以及两个`TrafficNodeDat`数组,分别用于存储火车和航班信息。 - `PNodeDat`结构体则用于表示路径中的一个节点,包含城市编号(`City`)和交通班次号(`TraNo`)。 2. **数组和变量声明**: - `CityName`数组用于存储每个城市的名称,按城市编号进行索引。 - `CityNum`用于记录城市的数量。 - `AdjList`数组存储各个城市的线路信息,下标对应城市编号。 3. **算法与功能**: - 系统可能实现了Dijkstra算法或类似算法来寻找最短路径,因为有`MinTime`和`StartTime`变量,这些通常与路径规划算法有关。 - `curPath`可能用于存储当前路径的信息。 - `SeekCity`函数可能是用来查找特定城市的函数,其参数是一个城市名称。 4. **编程语言特性**: - 使用了`#define`预处理器指令来设置常量,如城市节点的最大数量(`MAX_VERTEX_NUM`)、字符串的最大长度(`MAX_STRING_NUM`)和交通班次的最大数量(`MAX_TRAFFIC_NUM`)。 - `using namespace std`导入标准命名空间,方便使用iostream库中的输入输出操作。 5. **编程实践**: - 代码的日期和作者注释显示了良好的编程习惯,这对于代码维护和团队合作非常重要。 - 结构体的设计使得数据组织有序,方便查询和操作。 这个C++代码实现了全国交通咨询系统的核心功能,涉及城市节点管理、交通班次存储和查询,以及可能的路径规划算法。通过这些数据结构和算法,用户可以查询不同城市间的交通信息,并获取最优路径建议。