# Indicates the change of voxel. mask = torch.ones(x.shape[0], device=x.device, dtype=torch.bool) mask[:-1] = ranks[1:] != ranks[:-1]这里的mask尺寸是多少?ranks[1:] != ranks[:-1]rank是什么含义?
时间: 2024-01-01 14:06:34 浏览: 117
这里的`mask`是一个布尔类型的一维张量,形状为`(x.shape[0],)`,其中`x.shape[0]`是特征张量`x`的长度。`mask`的作用是指示哪些特征张量属于同一体素。具体来说,如果`mask[i]`为True,则表示`x[i]`和`x[i+1]`不属于同一体素。在该代码中,`mask`的长度等于特征张量`x`的长度,因为它的每个元素对应于特征张量中的一个元素。
`ranks`是一个一维张量,形状与特征张量`x`相同,它包含了特征张量中每个元素所属的体素的索引。具体来说,`ranks[i]`是特征张量`x[i]`所属的体素的索引。在这个代码中,`ranks[1:] != ranks[:-1]`是一个布尔类型的一维张量,它用于比较相邻特征张量所属的体素索引是否相等。如果相邻特征张量所属的体素索引不相等,则相应的元素为True,否则为False。这个布尔类型张量的长度比特征张量`x`的长度少1,因为它比较的是相邻特征张量的体素索引。
相关问题
'' Basic Operations example using TensorFlow library. Author: Aymeric Damien Project: https://github.com/aymericdamien/TensorFlow-Examples/ ''' from __future__ import print_function import tensorflow as tf # Basic constant operations # The value returned by the constructor represents the output # of the Constant op. a = tf.constant(2) b = tf.constant(3) # Launch the default graph. with tf.compat.v1.Session() as sess: print("a=2, b=3") print("Addition with constants: %i" % sess.run(a+b)) print("Multiplication with constants: %i" % sess.run(a*b)) # Basic Operations with variable as graph input # The value returned by the constructor represents the output # of the Variable op. (define as input when running session) # tf Graph input a = tf.placeholder(tf.int16) b = tf.placeholder(tf.int16) # Define some operations add = tf.add(a, b) mul = tf.multiply(a, b) # Launch the default graph. with tf.compat.v1.Session() as sess: # Run every operation with variable input print("Addition with variables: %i" % sess.run(add, feed_dict={a: 2, b: 3})) print("Multiplication with variables: %i" % sess.run(mul, feed_dict={a: 2, b: 3})) # ---------------- # More in details: # Matrix Multiplication from TensorFlow official tutorial # Create a Constant op that produces a 1x2 matrix. The op is # added as a node to the default graph. # # The value returned by the constructor represents the output # of the Constant op. matrix1 = tf.constant([[3., 3.]]) # Create another Constant that produces a 2x1 matrix. matrix2 = tf.constant([[2.],[2.]]) # Create a Matmul op that takes 'matrix1' and 'matrix2' as inputs. # The returned value, 'product', represents the result of the matrix # multiplication. product = tf.matmul(matrix1, matrix2) # To run the matmul op we call the session 'run()' method, passing 'product' # which represents the output of the matmul op. This indicates to the call # that we want to get the output of the matmul op back. # # All inputs needed by the op are run automatically by the session. They # typically are run in parallel. # # The call 'run(product)' thus causes the execution of threes ops in the # graph: the two constants and matmul. # # The output of the op is returned in 'result' as a numpy `ndarray` object. with tf.compat.v1.ession() as sess: result = sess.run(product) print(result) # ==> [[ 12.]]
这是一个使用 TensorFlow 库进行基本操作的例子。首先定义了两个常量 a 和 b,并使用 Session 运行了加法和乘法操作。然后定义了两个占位符 a 和 b,并定义了加法和乘法操作。最后,使用 Session 运行了矩阵乘法操作,并打印出结果。需要注意的是,使用 TensorFlow 2.0 及以上版本时,Session 已经被删除,需要使用 Eager Execution 模式代替。
The x and y instance variables indicate the position of the center of the shape, and the color instance variable indicates the color of the shape. The color of the shape is computed randomly in the constructor of the shape class and never changes after that, like this: color = new Color((float)Math.random(), (float)Math.random(), (float)Math.random()); The isVisible method is abstract, and indicates whether the shape is currently visible or not inside a window of width w and of height h. The isIn method is abstract, and indicates whether the point at coordinates (x, y) is currently inside the shape or not. The draw method simply changes the color of the graphics object g to be the correct color for the shape. Also add to your program a Start class to test your Shape class.帮我写出以上Java代码
以下是一个可能的实现:
```
import java.awt.Color;
import java.awt.Graphics;
public abstract class Shape {
protected int x, y;
protected Color color;
public Shape(int x, int y) {
this.x = x;
this.y = y;
color = new Color((float)Math.random(), (float)Math.random(), (float)Math.random());
}
public abstract boolean isVisible(int w, int h);
public abstract boolean isIn(int x, int y);
public void draw(Graphics g) {
g.setColor(color);
}
}
public class Start {
public static void main(String[] args) {
Shape shape = new Circle(50, 50, 20);
System.out.println("Is shape visible? " + shape.isVisible(100, 100));
System.out.println("Is (60, 60) inside shape? " + shape.isIn(60, 60));
}
}
```
注意,上面的代码中 Shape 是一个抽象类,不能被直接实例化。你需要创建特定的子类来实现 isVisible 和 isIn 方法。例如,下面是一个可能的 Circle 类的实现:
```
public class Circle extends Shape {
private int radius;
public Circle(int x, int y, int radius) {
super(x, y);
this.radius = radius;
}
@Override
public boolean isVisible(int w, int h) {
return x - radius > 0 && x + radius < w && y - radius > 0 && y + radius < h;
}
@Override
public boolean isIn(int x, int y) {
return Math.sqrt((x - this.x) * (x - this.x) + (y - this.y) * (y - this.y)) <= radius;
}
public void draw(Graphics g) {
super.draw(g);
g.fillOval(x - radius, y - radius, 2 * radius, 2 * radius);
}
}
```
注意,上面的 Circle 类重写了 Shape 类的 draw 方法,实现了在图形上绘制圆的功能。你可以创建其他的子类来实现不同的形状。
阅读全文