python用牛顿插值法实现缺失值的插值
时间: 2023-12-14 07:04:13 浏览: 256
牛顿插值法是一种多项式插值方法,可以用于缺失值的插值。具体步骤如下:
1. 确定已知数据点的横坐标和纵坐标,将其分别存放在数组x和数组y中。
2. 计算差商表:
```python
def diff_quotient(x, y):
n = len(x)
table = [[0] * n for i in range(n)]
for i in range(n):
table[i][0] = y[i]
for j in range(1, n):
for i in range(n - j):
table[i][j] = (table[i+1][j-1] - table[i][j-1]) / (x[i+j] - x[i])
return table
```
3. 计算插值多项式的系数:
```python
def newton_coefficient(x, y):
n = len(x)
table = diff_quotient(x, y)
coeff = [0] * n
for i in range(n):
coeff[i] = table[0][i]
return coeff
```
4. 用插值多项式计算缺失值:
```python
def newton_interpolation(x, y, x_missing):
n = len(x)
coeff = newton_coefficient(x, y)
res = coeff[-1]
for i in range(n-2, -1, -1):
res = res * (x_missing - x[i]) + coeff[i]
return res
```
完整代码如下:
```python
def diff_quotient(x, y):
n = len(x)
table = [[0] * n for i in range(n)]
for i in range(n):
table[i][0] = y[i]
for j in range(1, n):
for i in range(n - j):
table[i][j] = (table[i+1][j-1] - table[i][j-1]) / (x[i+j] - x[i])
return table
def newton_coefficient(x, y):
n = len(x)
table = diff_quotient(x, y)
coeff = [0] * n
for i in range(n):
coeff[i] = table[0][i]
return coeff
def newton_interpolation(x, y, x_missing):
n = len(x)
coeff = newton_coefficient(x, y)
res = coeff[-1]
for i in range(n-2, -1, -1):
res = res * (x_missing - x[i]) + coeff[i]
return res
x = [1, 2, 4, 5, 7, 9]
y = [6, 2, 7, 8, 3, 5]
x_missing = 3
y_missing = newton_interpolation(x, y, x_missing)
print('Missing value at x =', x_missing, 'is', y_missing)
```
阅读全文