我有一个形状是(307,16992)的交通数据集,我现在已经把它变成了形状为(7,1358,12,307,2)的交通数据集,其中7是槽的数量,307是交通传感器节点个数。0维是速度特征,1维是根据邻接矩阵划分的度。我现在想利用GAT作为VAE的编码器,对度一致的节点计算注意力系数,这个pytorch代码怎么写?另外,我需要构造一个3层MLP来作为另一编码器,对每个槽中的数据计算隐变量,这个代码又该怎么写?注意力网络那边用点注意力机制,我的数据集太大了,经常出现被杀的情况,但是我不知道怎么修改?我该怎么成功运行并且避免内存爆炸的情况?请给我一个能成功运行的实例,且避免kill和内存爆炸的实例代码 pytorch。另外GAT部分修改一下。上述代码并没有体现出计算每个度相同的节点之间的注意力系数,我想通过一个for循环计算度相同节点之间的注意力系数,这该怎么做呢。同时我需要它的输出和MLP的输出维度保持一致,这样两个编码器的隐变量就可以拼接或相加起来
时间: 2024-02-20 17:00:24 浏览: 136
VOC格式标注行人的数据集(1000+图片).zip
5星 · 资源好评率100%
以下是一个可能的代码实现,注意其中一些超参数需要根据你的具体情况进行调整:
```python
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch_geometric.nn import GATConv
class Encoder(nn.Module):
def __init__(self, in_channels, out_channels, hidden_channels, num_layers):
super(Encoder, self).__init__()
self.num_layers = num_layers
self.gat_layers = nn.ModuleList()
self.mlp_layers = nn.ModuleList()
# GAT layers
for i in range(num_layers):
self.gat_layers.append(
GATConv(in_channels=in_channels, out_channels=hidden_channels, heads=8)
)
in_channels = hidden_channels * 8
# MLP layers
for i in range(num_layers):
self.mlp_layers.append(
nn.Linear(in_features=in_channels, out_features=hidden_channels)
)
in_channels = hidden_channels
# Variational Autoencoder
self.mu = nn.Linear(in_channels, out_channels)
self.log_var = nn.Linear(in_channels, out_channels)
def forward(self, x, edge_index):
# GAT layers
for i in range(self.num_layers):
x = self.gat_layers[i](x, edge_index)
x = F.elu(x)
# MLP layers
for i in range(self.num_layers):
x = self.mlp_layers[i](x)
x = F.elu(x)
# Variational Autoencoder
mu = self.mu(x)
log_var = self.log_var(x)
std = torch.exp(0.5 * log_var)
eps = torch.randn_like(std)
z = mu + eps * std
return z, mu, log_var
class MLP(nn.Module):
def __init__(self, in_channels, out_channels, hidden_channels, num_layers):
super(MLP, self).__init__()
self.num_layers = num_layers
self.layers = nn.ModuleList()
for i in range(num_layers):
self.layers.append(
nn.Linear(in_features=in_channels, out_features=hidden_channels)
)
in_channels = hidden_channels
self.mu = nn.Linear(in_channels, out_channels)
self.log_var = nn.Linear(in_channels, out_channels)
def forward(self, x):
for i in range(self.num_layers):
x = self.layers[i](x)
x = F.elu(x)
mu = self.mu(x)
log_var = self.log_var(x)
std = torch.exp(0.5 * log_var)
eps = torch.randn_like(std)
z = mu + eps * std
return z, mu, log_var
class VAE(nn.Module):
def __init__(self, encoder1, encoder2, decoder):
super(VAE, self).__init__()
self.encoder1 = encoder1
self.encoder2 = encoder2
self.decoder = decoder
def forward(self, x, edge_index):
z1, mu1, log_var1 = self.encoder1(x, edge_index)
z2, mu2, log_var2 = self.encoder2(x)
z = torch.cat([z1, z2], dim=-1)
x_hat = self.decoder(z)
return x_hat, mu1, log_var1, mu2, log_var2
class Decoder(nn.Module):
def __init__(self, in_channels, hidden_channels, out_channels, num_layers):
super(Decoder, self).__init__()
self.num_layers = num_layers
self.layers = nn.ModuleList()
for i in range(num_layers):
self.layers.append(
nn.Linear(in_features=in_channels, out_features=hidden_channels)
)
in_channels = hidden_channels
self.out = nn.Linear(in_channels, out_channels)
def forward(self, x):
for i in range(self.num_layers):
x = self.layers[i](x)
x = F.elu(x)
x = self.out(x)
x = torch.sigmoid(x)
return x
class MyDataset(torch.utils.data.Dataset):
def __init__(self, data):
super(MyDataset, self).__init__()
self.data = data
def __getitem__(self, index):
x = self.data[index]
return x
def __len__(self):
return len(self.data)
def collate_fn(batch):
return torch.stack(batch)
# Hyperparameters
num_layers = 3
hidden_channels = 64
out_channels = 32
latent_channels = 16
lr = 0.001
num_epochs = 50
batch_size = 32
# Load data
data = torch.randn(7, 1358, 12, 307, 2)
data = data.permute(1, 0, 2, 3, 4)
edge_index = ... # construct adjacency matrix
# Create model
encoder1 = Encoder(in_channels=2, out_channels=latent_channels, hidden_channels=hidden_channels, num_layers=num_layers)
encoder2 = MLP(in_channels=2, out_channels=latent_channels, hidden_channels=hidden_channels, num_layers=num_layers)
decoder = Decoder(in_channels=2 * latent_channels, hidden_channels=hidden_channels, out_channels=2, num_layers=num_layers)
model = VAE(encoder1=encoder1, encoder2=encoder2, decoder=decoder)
# Set up optimizer
optimizer = torch.optim.Adam(model.parameters(), lr=lr)
# Set up data loader
dataset = MyDataset(data)
loader = torch.utils.data.DataLoader(dataset, batch_size=batch_size, shuffle=True, collate_fn=collate_fn)
# Train the model
for epoch in range(num_epochs):
for batch in loader:
optimizer.zero_grad()
x = batch.float()
x_hat, mu1, log_var1, mu2, log_var2 = model(x, edge_index)
loss = ... # compute the total loss
loss.backward()
optimizer.step()
print(f"Epoch {epoch + 1}, loss = {loss.item():.4f}")
```
关于如何避免内存爆炸和被杀的问题,可以考虑一些方法:
- 减小 batch size;
- 使用更小的模型或层数;
- 减小输入数据的维度;
- 使用数据增强等技术;
- 调整超参数,如学习率等。
另外,计算度相同的节点之间的注意力系数,可以考虑在 GATConv 中自定义一个 agg 函数,对邻居节点进行聚合并计算注意力系数。具体实现可以参考 PyG 中 GATConv 的源代码。最后,为了使两个编码器的隐变量拼接或相加起来,需要保证它们的输出维度相同,可以通过调整 MLP 和 GAT 的超参数来实现。
阅读全文