c语言编写程序求解3个数的最小公倍数
时间: 2024-10-15 16:06:24 浏览: 49
在C语言中,求三个数的最小公倍数(LCM)通常需要先找到两个数的最大公约数(GCD),然后用这两个数的乘积除以它们的最大公约数即得到最小公倍数。这里我们可以借助欧几里得算法来计算最大公约数,接着再计算最小公倍数。
以下是一个简单的C语言函数示例:
```c
#include <stdio.h>
// 计算最大公约数 (Euclidean algorithm)
int gcd(int a, int b) {
if (b == 0)
return a;
else
return gcd(b, a % b);
}
// 计算最小公倍数
int lcm(int a, int b) {
return (a * b) / gcd(a, b);
}
// 主函数,求解三个数的最小公倍数
int main() {
int num1, num2, num3, temp_lcm;
printf("请输入三个整数:");
scanf("%d%d%d", &num1, &num2, &num3);
// 先计算前两个数的LCM
temp_lcm = lcm(num1, num2);
// 然后加上第三个数,得到最终结果
int lcm_result = temp_lcm * num3 / gcd(temp_lcm, num3);
printf("这三个数的最小公倍数是:%d\n", lcm_result);
return 0;
}
```
在这个程序中,用户会输入三个数字,先计算前两个数的最小公倍数,然后再将这个临时结果与第三个数通过同样的方法计算,最后得到的结果就是三者的最小公倍数。
阅读全文
相关推荐


















