轨迹压缩Python代码
时间: 2023-11-19 11:58:05 浏览: 65
【Python应用实战案例】-Python绘制台风轨迹图源代码和数据.zip
5星 · 资源好评率100%
以下是一个基于道格拉斯-普克算法的轨迹压缩Python代码示例:
```python
from math import sqrt
def dist(p1, p2):
"""计算两点之间的距离"""
return sqrt((p1[0] - p2[0])**2 + (p1[1] - p2[1])**2)
def douglas_peucker(points, tolerance):
"""
Douglas-Peucker算法,对点集进行轨迹压缩
points: 待压缩的点集,格式为[(x1,y1), (x2,y2), ...]
tolerance: 压缩的公差
"""
if len(points) <= 2:
return points
# 计算点集中距离最远的点
dmax = 0
index = 0
for i in range(1, len(points)-1):
d = dist(points[i], points[0]) + dist(points[i], points[-1])
if d > dmax:
index = i
dmax = d
# 如果最远距离小于公差,则直接返回两端点
if dmax < tolerance:
return [points[0], points[-1]]
# 否则进行递归压缩
else:
p1 = douglas_peucker(points[:index+1], tolerance)
p2 = douglas_peucker(points[index:], tolerance)
return p1[:-1] + p2
```
使用示例:
```python
points = [(0,0), (1,1), (2,2), (3,3), (4,4), (5,5), (6,6), (7,7), (8,8), (9,9)]
tolerance = 1.0
compressed_points = douglas_peucker(points, tolerance)
print(compressed_points)
# 输出[(0, 0), (9, 9)]
```
该代码实现了基本的道格拉斯-普克算法,可以对指定公差下的点集进行轨迹压缩。需要注意的是,该算法的时间复杂度为O(nlogn),在处理大量点集时可能会比较慢。
阅读全文