为什么MA移动平均可以用白噪声也就是残差值来组合?都不涉及到历史值? ARMA模型的p和q是干嘛的,时间序列的自相关性是什么,ARIMA就是把非平稳变平稳,如何做到的?
时间: 2024-03-29 21:35:46 浏览: 101
ARMA_ARMA_AR_ma模型_
5星 · 资源好评率100%
MA(移动平均)模型是一种常见的时间序列模型,它将当前时刻的观测值与移动平均项的线性组合相结合,从而预测未来的观测值。在MA模型中,移动平均项通常用白噪声或残差来表示,这是因为白噪声具有良好的随机性和无序性,可以用来表示随机误差,而移动平均项的历史值则对预测未来的观测值影响较小。
ARMA模型是由AR(自回归)模型和MA(移动平均)模型组合而成的,其中p和q分别表示AR模型和MA模型中的阶数。AR模型是基于时间序列自身的历史值来预测未来的观测值,而MA模型是基于随机误差的历史值来预测未来的观测值。ARMA模型将这两种方法结合起来,既考虑历史值的影响,也考虑误差项的影响,从而能够更准确地预测未来的观测值。
时间序列的自相关性是指序列中一个时刻的观测值与其之前的观测值之间的相关性。如果序列的自相关性很高,那么当前时刻的观测值很可能受到之前观测值的影响;如果序列的自相关性很低,那么当前时刻的观测值可能更多地受到随机误差的影响。自相关性可以通过自相关函数(ACF)和偏自相关函数(PACF)来进行检验和展示。
ARIMA(差分自回归移动平均)模型是ARMA模型在非平稳序列上的推广。ARIMA模型通过差分操作将非平稳序列转换为平稳序列,然后再应用ARMA模型进行预测。差分操作可以消除序列中的趋势和季节性,从而使序列变得平稳。ARIMA模型的参数包括AR和MA的阶数,以及差分的次数,通过对这些参数的选择和调整,可以得到更准确的预测结果。
阅读全文