#方法2利用set()的特性去重 print('去重新下载意愿选项总数为:',len(download)) download_set = set(download) print('方法二去重新下载意愿选项总数为;',len(download_set)) print('用户选项为;',download_set)写出隔行注释
时间: 2023-11-29 16:05:24 浏览: 45
```python
#利用set()的特性去重
print('去重新下载意愿选项总数为:',len(download))
download_set = set(download) #将列表转换为集合,自动去重
print('方法二去重新下载意愿选项总数为;',len(download_set))
print('用户选项为;',download_set)
```
以上代码利用了Python中set()函数的特性,将列表转换为集合,由于集合中的元素不允许重复,自动去重并返回一个新的集合。最终输出去重后的选项总数和用户选项集合。
相关问题
详细逐步解释下列代码:import os.path import re import yaml import csv from tasly import builder_utils ############################ # IntAct - MutationDs # ############################ def parser(databases_directory, download=True): relationships = set() # 加载yml文件 with open('./yml/mutationDsConfig.yml', 'r') as f: config = yaml.safe_load(f) header = config['header'] output_file_name = "mutation_curated_affects_interaction_with.csv" regex = r":(\w+)\(" url = config['mutations_url'] directory = os.path.join(databases_directory, "MutationDs") builder_utils.checkDirectory(directory) file_name = os.path.join(directory, url.split('/')[-1]) if download: builder_utils.downloadDB(url, directory) with open(file_name, 'r', encoding='utf-8') as mf: first = True for line in mf: if first: first = False continue data = line.rstrip("\r\n").split("\t") if len(data) > 12: internal_id = data[0] pvariant= '_'.join(data[1].split(':')) effect = data[5] organism = data[10] interaction = data[11] evidence = data[12] if organism.startswith("9606"): matches = re.finditer(regex, interaction) for matchNum, match in enumerate(matches, start=1): interactor = match.group(1) relationships.add((pvariant, interactor, "CURATED_AFFECTS_INTERACTION_WITH", effect, interaction, evidence, internal_id, "Intact-MutationDs")) # builder_utils.remove_directory(directory) return (relationships, header, output_file_name) if __name__ == '__main__': databases_directory = './databases' relationships, header, output_file_name = parser(databases_directory, download=True) # 新建CSV文件并写入表头 with open(os.path.join('./databases/MutationDs', output_file_name), 'w', newline='', encoding='utf-8') as f: writer = csv.writer(f) writer.writerow(header) for item in relationships: writer.writerow(item) print("Data saved to {} successfully!".format('entities.csv'))
这段代码的作用是解析一个特定的文件,并将其中的数据存储到一个 CSV 文件中。现在我将逐步解释代码:
```
import os.path
import re
import yaml
import csv
from tasly import builder_utils
```
这段代码导入了四个 Python 模块 `os.path`, `re`, `yaml`, `csv`,以及一个自定义模块 `builder_utils`。
```
def parser(databases_directory, download=True):
relationships = set() # 加载yml文件
with open('./yml/mutationDsConfig.yml', 'r') as f:
config = yaml.safe_load(f)
header = config['header']
output_file_name = "mutation_curated_affects_interaction_with.csv"
regex = r":(\w+)\("
url = config['mutations_url']
directory = os.path.join(databases_directory, "MutationDs")
builder_utils.checkDirectory(directory)
file_name = os.path.join(directory, url.split('/')[-1])
if download:
builder_utils.downloadDB(url, directory)
with open(file_name, 'r', encoding='utf-8') as mf:
first = True
for line in mf:
if first:
first = False
continue
data = line.rstrip("\r\n").split("\t")
if len(data) > 12:
internal_id = data[0]
pvariant= '_'.join(data[1].split(':'))
effect = data[5]
organism = data[10]
interaction = data[11]
evidence = data[12]
if organism.startswith("9606"):
matches = re.finditer(regex, interaction)
for matchNum, match in enumerate(matches, start=1):
interactor = match.group(1)
relationships.add((pvariant, interactor, "CURATED_AFFECTS_INTERACTION_WITH", effect, interaction, evidence, internal_id, "Intact-MutationDs"))
# builder_utils.remove_directory(directory)
return (relationships, header, output_file_name)
```
这段代码定义了一个名为 `parser` 的函数,它接受一个参数 `databases_directory` 和一个可选参数 `download`,默认值为 `True`。该函数首先加载一个名为 `mutationDsConfig.yml` 的 YAML 文件,该文件包含一些配置信息,如 `header`、`mutations_url` 等。然后,函数使用 `os.path` 模块来构建一个目录名,该目录名为 `databases_directory` 加上 `MutationDs`。接着,函数使用 `builder_utils` 模块提供的 `checkDirectory` 函数检查该目录是否存在,如果不存在则创建该目录。然后,函数使用 `builder_utils` 模块提供的 `downloadDB` 函数下载一个名为 `mutations.tsv` 的文件,该文件存储了一些基因突变相关的数据。函数接着打开该文件,并读取其中的数据。函数使用 `re` 模块中的 `finditer` 函数找到所有匹配特定正则表达式的子字符串,然后将匹配的结果存储到一个名为 `relationships` 的集合中。最后,函数返回三个值:`relationships`、`header` 和 `output_file_name`。
```
if __name__ == '__main__':
databases_directory = './databases'
relationships, header, output_file_name = parser(databases_directory, download=True)
# 新建CSV文件并写入表头
with open(os.path.join('./databases/MutationDs', output_file_name), 'w', newline='', encoding='utf-8') as f:
writer = csv.writer(f)
writer.writerow(header)
for item in relationships:
writer.writerow(item)
print("Data saved to {} successfully!".format('entities.csv'))
```
这段代码检查当前模块是否为主模块,如果是,则执行下面的代码。首先,它定义了一个名为 `databases_directory` 的变量,该变量指定了存储数据的目录。然后,它调用 `parser` 函数,将 `databases_directory` 和 `download=True` 作为参数传递给该函数。函数返回三个值,这些值被分别赋值给三个变量 `relationships`、`header` 和 `output_file_name`。接着,代码使用 `csv` 模块创建一个新的 CSV 文件,并将 `header` 写入该文件。最后,代码遍历 `relationships` 集合中的元素,并将每个元素写入 CSV 文件中。
详细解释代码import torch import torch.nn as nn import torch.optim as optim import torchvision import torchvision.transforms as transforms from torch.utils.data import DataLoader # 图像预处理 transform = transforms.Compose( [transforms.ToTensor(), transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))]) # 加载数据集 trainset = torchvision.datasets.CIFAR10(root='./data', train=True, download=True, transform=transform) trainloader = DataLoader(trainset, batch_size=128, shuffle=True, num_workers=0) testset = torchvision.datasets.CIFAR10(root='./data', train=False, download=True, transform=transform) testloader = DataLoader(testset, batch_size=128, shuffle=False, num_workers=0) # 构建模型 class RNNModel(nn.Module): def init(self): super(RNNModel, self).init() self.rnn = nn.RNN(input_size=3072, hidden_size=512, num_layers=2, batch_first=True) self.fc = nn.Linear(512, 10) def forward(self, x): # 将输入数据reshape成(batch_size, seq_len, feature_dim) x = x.view(-1, 3072, 1).transpose(1, 2) x, _ = self.rnn(x) x = x[:, -1, :] x = self.fc(x) return x net = RNNModel() # 定义损失函数和优化器 criterion = nn.CrossEntropyLoss() optimizer = optim.Adam(net.parameters(), lr=0.001) # 训练模型 loss_list = [] acc_list = [] for epoch in range(30): # 多批次循环 running_loss = 0.0 correct = 0 total = 0 for i, data in enumerate(trainloader, 0): # 获取输入 inputs, labels = data # 梯度清零 optimizer.zero_grad() # 前向传播,反向传播,优化 outputs = net(inputs) loss = criterion(outputs, labels) loss.backward() optimizer.step() # 打印统计信息 running_loss += loss.item() _, predicted = torch.max(outputs.data, 1) total += labels.size(0) correct += (predicted == labels).sum().item() acc = 100 * correct / total acc_list.append(acc) loss_list.append(running_loss / len(trainloader)) print('[%d] loss: %.3f, acc: %.3f' % (epoch + 1, running_loss / len(trainloader), acc)) print('Finished Training') torch.save(net.state_dict(), 'rnn1.pt') # 绘制loss变化曲线和准确率变化曲线 import matplotlib.pyplot as plt fig, axs = plt.subplots(2, 1, figsize=(10, 10)) axs[0].plot(loss_list) axs[0].set_title("Training Loss") axs[0].set_xlabel("Epoch") axs[0].set_ylabel("Loss") axs[1].plot(acc_list) axs[1].set_title("Training Accuracy") axs[1].set_xlabel("Epoch") axs[1].set_ylabel("Accuracy") plt.show() # 测试模型 correct = 0 total = 0 with torch.no_grad(): for data in testloader: images, labels = data outputs = net(images) _, predicted = torch.max(outputs.data, 1) total += labels.size(0) correct += (predicted == labels).sum().item() print('Accuracy of the network on the 10000 test images: %d %%' % (100 * correct / total))
这段代码是一个基于RNN(循环神经网络)的模型来对CIFAR-10数据集进行分类。以下是详细的解释:
1. 导入需要的库:
```
import torch
import torch.nn as nn
import torch.optim as optim
import torchvision
import torchvision.transforms as transforms
from torch.utils.data import DataLoader
```
2. 图像预处理:
```
transform = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
])
```
这里使用了transforms.Compose()函数来将多个预处理操作组合在一起。首先将图像转换成张量,然后进行归一化,使其值在[-1,1]之间。
3. 加载数据集:
```
trainset = torchvision.datasets.CIFAR10(root='./data', train=True, download=True, transform=transform)
trainloader = DataLoader(trainset, batch_size=128, shuffle=True, num_workers=0)
testset = torchvision.datasets.CIFAR10(root='./data', train=False, download=True, transform=transform)
testloader = DataLoader(testset, batch_size=128, shuffle=False, num_workers=0)
```
这里使用了torchvision.datasets.CIFAR10()函数来加载CIFAR-10数据集,train=True表示加载训练集,train=False表示加载测试集。通过DataLoader()函数将数据集转换成一个可迭代的对象,可以方便地进行批处理、数据增强等操作。
4. 构建模型:
```
class RNNModel(nn.Module):
def __init__(self):
super(RNNModel, self).__init__()
self.rnn = nn.RNN(input_size=3072, hidden_size=512, num_layers=2, batch_first=True)
self.fc = nn.Linear(512, 10)
def forward(self, x):
x = x.view(-1, 3072, 1).transpose(1, 2)
x, _ = self.rnn(x)
x = x[:, -1, :]
x = self.fc(x)
return x
net = RNNModel()
```
这里定义了一个RNNModel类,它继承了nn.Module类。在__init__()方法中,我们定义了一个RNN层和一个全连接层来构建模型。在forward()方法中,我们首先将输入数据reshape成(batch_size, seq_len, feature_dim)的形状,然后经过RNN层得到输出,最后经过全连接层得到最终的分类结果。
5. 定义损失函数和优化器:
```
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(net.parameters(), lr=0.001)
```
这里使用交叉熵损失函数和Adam优化器来训练模型。
6. 训练模型:
```
loss_list = []
acc_list = []
for epoch in range(30):
running_loss = 0.0
correct = 0
total =
阅读全文
相关推荐















