softmax和softmax2d
时间: 2024-03-31 07:29:14 浏览: 129
softmax网络的两种实现
softmax是一种常用的激活函数,主要用于多分类问题中。它将一个向量的实数值转化为概率分布,使得每个元素的取值范围在0到1之间,并且所有元素的和为1。softmax函数的定义如下:
对于一个具有n个元素的向量x = [x1, x2, ..., xn],softmax函数的计算公式如下:
softmax(x) = [e^x1 / (e^x1 + e^x2 + ... + e^xn), e^x2 / (e^x1 + e^x2 + ... + e^xn), ..., e^xn / (e^x1 + e^x2 + ... + e^xn)]
其中,e表示自然对数的底数。
softmax2d是对二维矩阵进行softmax操作的扩展。它将每一行作为一个向量,对每一行进行softmax操作,得到一个概率分布。这样可以处理多个样本同时进行分类。
阅读全文