adc_regular_channel_config(ADC1, ADC_CHANNEL_10, ADC_SAMPLE_TIME_55_5_CYCLE, 1);

时间: 2023-08-08 14:05:44 浏览: 96
这个函数是用来配置 ADC(模数转换器)的常规通道参数。它的参数分别是 ADC 实例、ADC 通道、采样时间和转换序列序号。 在这个例子中,函数的含义是配置 ADC1 的通道 10,采样时间为 55.5 个周期,转换序号为 1。ADC_SAMPLE_TIME_55_5_CYCLE 是一个宏定义,表示采样时间为 55.5 个周期。 这个函数的作用是设置 ADC 的通道和采样时间,以便后续进行模数转换。
相关问题

stm32f103c8t6adc采集电压代码,并读取adc的值

以下是基于STM32CubeIDE的ADC采集电压代码示例,可以参考: 1. 配置ADC ``` /* ADC1 init function */ static void MX_ADC1_Init(void) { ADC_ChannelConfTypeDef sConfig = {0}; /** Configure the global features of the ADC (Clock, Resolution, Data Alignment and number of conversion) */ hadc1.Instance = ADC1; hadc1.Init.ScanConvMode = ADC_SCAN_DISABLE; hadc1.Init.ContinuousConvMode = DISABLE; hadc1.Init.DiscontinuousConvMode = DISABLE; hadc1.Init.ExternalTrigConv = ADC_SOFTWARE_START; hadc1.Init.DataAlign = ADC_DATAALIGN_RIGHT; hadc1.Init.NbrOfConversion = 1; if (HAL_ADC_Init(&hadc1) != HAL_OK) { Error_Handler(); } /** Configure Regular Channel */ sConfig.Channel = ADC_CHANNEL_0; // ADC采集通道为0 sConfig.Rank = ADC_REGULAR_RANK_1; sConfig.SamplingTime = ADC_SAMPLETIME_1CYCLE_5; // ADC采样时间为1.5个周期 if (HAL_ADC_ConfigChannel(&hadc1, &sConfig) != HAL_OK) { Error_Handler(); } } ``` 2. 启动ADC ``` /* Start ADC conversion */ if (HAL_ADC_Start(&hadc1) != HAL_OK) { /* Start Conversation Error */ Error_Handler(); } ``` 3. 读取ADC值 ``` /* Wait for conversion to complete */ if (HAL_ADC_PollForConversion(&hadc1, 100) != HAL_OK) { /* Error */ Error_Handler(); } /* Read ADC value */ uint16_t adc_value = HAL_ADC_GetValue(&hadc1); ``` 完整代码示例: ``` #include "main.h" #include "stm32f1xx_hal.h" ADC_HandleTypeDef hadc1; void SystemClock_Config(void); static void MX_GPIO_Init(void); static void MX_ADC1_Init(void); int main(void) { /* Configure the system clock */ SystemClock_Config(); /* Initialize all configured peripherals */ MX_GPIO_Init(); MX_ADC1_Init(); while (1) { /* Start ADC conversion */ if (HAL_ADC_Start(&hadc1) != HAL_OK) { /* Start Conversation Error */ Error_Handler(); } /* Wait for conversion to complete */ if (HAL_ADC_PollForConversion(&hadc1, 100) != HAL_OK) { /* Error */ Error_Handler(); } /* Read ADC value */ uint16_t adc_value = HAL_ADC_GetValue(&hadc1); /* Convert ADC value to voltage */ float voltage = (float)adc_value / 4096.0 * 3.3; /* Do something with voltage value */ } } /** * @brief ADC1 Initialization Function * @param None * @retval None */ static void MX_ADC1_Init(void) { ADC_ChannelConfTypeDef sConfig = {0}; /** Configure the global features of the ADC (Clock, Resolution, Data Alignment and number of conversion) */ hadc1.Instance = ADC1; hadc1.Init.ScanConvMode = ADC_SCAN_DISABLE; hadc1.Init.ContinuousConvMode = DISABLE; hadc1.Init.DiscontinuousConvMode = DISABLE; hadc1.Init.ExternalTrigConv = ADC_SOFTWARE_START; hadc1.Init.DataAlign = ADC_DATAALIGN_RIGHT; hadc1.Init.NbrOfConversion = 1; if (HAL_ADC_Init(&hadc1) != HAL_OK) { Error_Handler(); } /** Configure Regular Channel */ sConfig.Channel = ADC_CHANNEL_0; // ADC采集通道为0 sConfig.Rank = ADC_REGULAR_RANK_1; sConfig.SamplingTime = ADC_SAMPLETIME_1CYCLE_5; // ADC采样时间为1.5个周期 if (HAL_ADC_ConfigChannel(&hadc1, &sConfig) != HAL_OK) { Error_Handler(); } } /** * @brief GPIO Initialization Function * @param None * @retval None */ static void MX_GPIO_Init(void) { /* GPIO Ports Clock Enable */ __HAL_RCC_GPIOC_CLK_ENABLE(); } /** * @brief This function is executed in case of error occurrence. * @retval None */ void Error_Handler(void) { /* User can add his own implementation to report the HAL error return state */ while (1) { } } /** * @brief System Clock Configuration * @retval None */ void SystemClock_Config(void) { RCC_OscInitTypeDef RCC_OscInitStruct = {0}; RCC_ClkInitTypeDef RCC_ClkInitStruct = {0}; /** Initializes the RCC Oscillators according to the specified parameters * in the RCC_OscInitTypeDef structure. */ RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSI; RCC_OscInitStruct.HSIState = RCC_HSI_ON; RCC_OscInitStruct.HSICalibrationValue = RCC_HSICALIBRATION_DEFAULT; RCC_OscInitStruct.PLL.PLLState = RCC_PLL_NONE; if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK) { Error_Handler(); } /** Initializes the CPU, AHB and APB buses clocks */ RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK | RCC_CLOCKTYPE_SYSCLK | RCC_CLOCKTYPE_PCLK1 | RCC_CLOCKTYPE_PCLK2; RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_HSI; RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1; RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV2; RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1; if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_0) != HAL_OK) { Error_Handler(); } } ```

stm32f103c8t6 adc采样电压程序

下面是一个简单的 ADC 采样电压的程序,基于 STM32F103C8T6 的 HAL 库: ```c #include "stm32f1xx_hal.h" ADC_HandleTypeDef hadc; void SystemClock_Config(void); static void MX_GPIO_Init(void); static void MX_ADC_Init(void); int main(void) { HAL_Init(); SystemClock_Config(); MX_GPIO_Init(); MX_ADC_Init(); while (1) { HAL_ADC_Start(&hadc); HAL_ADC_PollForConversion(&hadc, 100); uint16_t adc_value = HAL_ADC_GetValue(&hadc); float voltage = (float)adc_value * 3.3 / 4095.0; } } void SystemClock_Config(void) { RCC_OscInitTypeDef RCC_OscInitStruct = {0}; RCC_ClkInitTypeDef RCC_ClkInitStruct = {0}; __HAL_RCC_PWR_CLK_ENABLE(); __HAL_PWR_VOLTAGESCALING_CONFIG(PWR_REGULATOR_VOLTAGE_SCALE1); RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSI; RCC_OscInitStruct.HSIState = RCC_HSI_ON; RCC_OscInitStruct.HSICalibrationValue = RCC_HSICALIBRATION_DEFAULT; RCC_OscInitStruct.PLL.PLLState = RCC_PLL_NONE; if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK) { Error_Handler(); } RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK | RCC_CLOCKTYPE_SYSCLK | RCC_CLOCKTYPE_PCLK1 | RCC_CLOCKTYPE_PCLK2; RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_HSI; RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1; RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV2; RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1; if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_0) != HAL_OK) { Error_Handler(); } } static void MX_ADC_Init(void) { ADC_ChannelConfTypeDef sConfig = {0}; __HAL_RCC_ADC1_CLK_ENABLE(); hadc.Instance = ADC1; hadc.Init.ScanConvMode = DISABLE; hadc.Init.ContinuousConvMode = DISABLE; hadc.Init.DiscontinuousConvMode = DISABLE; hadc.Init.ExternalTrigConv = ADC_SOFTWARE_START; hadc.Init.DataAlign = ADC_DATAALIGN_RIGHT; hadc.Init.NbrOfConversion = 1; if (HAL_ADC_Init(&hadc) != HAL_OK) { Error_Handler(); } sConfig.Channel = ADC_CHANNEL_0; sConfig.Rank = ADC_REGULAR_RANK_1; sConfig.SamplingTime = ADC_SAMPLETIME_1CYCLE_5; if (HAL_ADC_ConfigChannel(&hadc, &sConfig) != HAL_OK) { Error_Handler(); } } static void MX_GPIO_Init(void) { GPIO_InitTypeDef GPIO_InitStruct = {0}; __HAL_RCC_GPIOC_CLK_ENABLE(); GPIO_InitStruct.Pin = GPIO_PIN_13; GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP; GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW; HAL_GPIO_Init(GPIOC, &GPIO_InitStruct); } ``` 该程序通过 ADC1 通道 0 采样电压,并将其转换为电压值。其中的 `SystemClock_Config` 函数配置了系统时钟为 HSI,而 `MX_ADC_Init` 函数初始化了 ADC1,并将其配置为单通道,单次转换模式。在主循环中,每次通过 `HAL_ADC_Start` 函数启动 ADC 转换,并通过 `HAL_ADC_GetValue` 函数获取转换结果,最后将其转换为电压值。

相关推荐

最新推荐

recommend-type

Java开发案例-springboot-66-自定义starter-源代码+文档.rar

Java开发案例-springboot-66-自定义starter-源代码+文档.rar Java开发案例-springboot-66-自定义starter-源代码+文档.rar Java开发案例-springboot-66-自定义starter-源代码+文档.rar Java开发案例-springboot-66-自定义starter-源代码+文档.rar Java开发案例-springboot-66-自定义starter-源代码+文档.rar Java开发案例-springboot-66-自定义starter-源代码+文档.rar
recommend-type

单家独院式别墅图纸D027-三层-12.80&10.50米-施工图.dwg

单家独院式别墅图纸D027-三层-12.80&10.50米-施工图.dwg
recommend-type

啦啦啦啦啦啦啦啦啦啦啦啦啦啦啦

啦啦啦啦啦啦啦啦啦啦啦啦啦啦啦
recommend-type

课程大作业基于Vue+PHP开发的简单问卷系统源码+使用说明.zip

【优质项目推荐】 1、项目代码均经过严格本地测试,运行OK,确保功能稳定后才上传平台。可放心下载并立即投入使用,若遇到任何使用问题,随时欢迎私信反馈与沟通,博主会第一时间回复。 2、项目适用于计算机相关专业(如计科、信息安全、数据科学、人工智能、通信、物联网、自动化、电子信息等)的在校学生、专业教师,或企业员工,小白入门等都适用。 3、该项目不仅具有很高的学习借鉴价值,对于初学者来说,也是入门进阶的绝佳选择;当然也可以直接用于 毕设、课设、期末大作业或项目初期立项演示等。 3、开放创新:如果您有一定基础,且热爱探索钻研,可以在此代码基础上二次开发,进行修改、扩展,创造出属于自己的独特应用。 欢迎下载使用优质资源!欢迎借鉴使用,并欢迎学习交流,共同探索编程的无穷魅力! 课程大作业基于Vue+PHP开发的简单问卷系统源码+使用说明.zip Project setup ``` npm install ``` ### Compiles and hot-reloads for development ``` npm run serve ``` ### Compiles and minifies for production ``` npm run build ``` ### Lints and fixes files ``` npm run lint ``` ### Customize configuration See [Configuration Reference](https://cli.vuejs.org/config/).
recommend-type

Django媒体资源学习源代码 (附一套简易Django文件上传源码)

Django FTP MEDIA_ROOT MEDIA_URL 源码
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

MATLAB柱状图在信号处理中的应用:可视化信号特征和频谱分析

![matlab画柱状图](https://img-blog.csdnimg.cn/3f32348f1c9c4481a6f5931993732f97.png) # 1. MATLAB柱状图概述** MATLAB柱状图是一种图形化工具,用于可视化数据中不同类别或组的分布情况。它通过绘制垂直条形来表示每个类别或组中的数据值。柱状图在信号处理中广泛用于可视化信号特征和进行频谱分析。 柱状图的优点在于其简单易懂,能够直观地展示数据分布。在信号处理中,柱状图可以帮助工程师识别信号中的模式、趋势和异常情况,从而为信号分析和处理提供有价值的见解。 # 2. 柱状图在信号处理中的应用 柱状图在信号处理
recommend-type

HSV转为RGB的计算公式

HSV (Hue, Saturation, Value) 和 RGB (Red, Green, Blue) 是两种表示颜色的方式。下面是将 HSV 转换为 RGB 的计算公式: 1. 将 HSV 中的 S 和 V 值除以 100,得到范围在 0~1 之间的值。 2. 计算色相 H 在 RGB 中的值。如果 H 的范围在 0~60 或者 300~360 之间,则 R = V,G = (H/60)×V,B = 0。如果 H 的范围在 60~120 之间,则 R = ((120-H)/60)×V,G = V,B = 0。如果 H 的范围在 120~180 之间,则 R = 0,G = V,B =
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。