def forward(self, inputs): tensor = inputs.view(-1, 1, 28, 28) #尺寸 tensor = F.relu(self.conv1(tensor)) tensor = self.pool1(tensor) tensor = F.relu(self.conv2(tensor)) tensor = self.pool2(tensor) tensor = F.relu(self.conv3(tensor)) tensor = tensor.view(-1, 7*7*120) tensor = F.relu(self.fc1(tensor)) tensor = self.fc2(tensor) return tensor 解释代码,尤其第二句
时间: 2023-11-30 19:03:48 浏览: 134
Python库 | torchvision-0.11.1-cp36-cp36m-macosx_10_9_x86_64.whl
这段代码是一个神经网络模型的前向传播部分。它接受一个输入张量 `inputs`,然后通过一系列操作将其转换为一个输出张量 `tensor`。
在第二句代码中,`inputs.view(-1, 1, 28, 28)` 是对输入张量进行形状变换的操作。这里的 `-1` 表示根据输入张量的大小自动推断出第一维的大小,`1` 表示通道数(对于灰度图像来说只有一个通道),`28, 28` 表示图像的高度和宽度。
所以,这行代码的作用是将输入张量 `inputs` 变换为形状为 (batch_size, 1, 28, 28) 的四维张量,其中 `batch_size` 是输入张量中样本的数量。这种形状通常用于处理图像数据。
阅读全文