模拟退火算法python源码
时间: 2024-09-07 18:03:16 浏览: 49
Python 模拟退火算法 (含源码)
5星 · 资源好评率100%
模拟退火算法是一种用于求解全局优化问题的随机搜索算法,它模拟了金属冷却过程中的晶格结构变化。以下是基于Python的一个简化版的模拟退火算法实现:
```python
import random
def initial_solution(n):
# 生成初始解决方案
return [random.randint(0, 1) for _ in range(n)]
def energy(solution):
# 计算当前解决方案的能量函数值
# 这里假设是一个简单的平方和形式
return sum(solution[i] * solution[(i + 1) % n] for i in range(n))
def neighbor(solution):
# 随机生成邻域状态
new_solution = solution.copy()
i = random.randint(0, len(new_solution) - 1)
if random.random() < 0.5:
new_solution[i] = 1 - new_solution[i]
return new_solution
def simulated_annealing(T, T_min, max_steps, solution):
current_energy = energy(solution)
best_energy = current_energy
best_solution = solution
steps = 0
while T > T_min and steps < max_steps:
new_solution = neighbor(solution)
new_energy = energy(new_solution)
delta_E = new_energy - current_energy
if delta_E < 0 or random.random() < exp(-delta_E / T):
current_energy = new_energy
solution = new_solution
if new_energy < best_energy:
best_energy = new_energy
best_solution = solution
T *= 0.99 # 温度随步骤减小
steps += 1
return best_solution, best_energy
# 示例用法
n = 10 # 解决问题的维度
solution = initial_solution(n)
T = 1000 # 初始温度
T_min = 0.01 # 最终温度
max_steps = 1000 # 总步数
best_solution, best_energy = simulated_annealing(T, T_min, max_steps, solution)
print(f"Best solution: {best_solution}, Energy: {best_energy}")
阅读全文