ery.exec();
时间: 2024-09-11 20:07:54 浏览: 30
`ery.exec()`通常是在JavaScript的Node.js环境中使用的API,它对应于Node.js的child_process模块中的exec方法。这个方法用于执行外部命令并获取其输出结果。具体来说:
1. `ery`在这里通常是一个ChildProcess对象,它是通过`child_process.spawn`或`child_process.exec`创建的,用于启动一个新的进程。
2. `exec()`方法接收一个字符串参数,该参数是你要运行的命令。
3. 当命令执行完毕后,方法会返回一个Promise,你可以使用`.then`处理命令的结果,包括错误信息(如果有的话)和命令的标准输出(stdout)和标准错误输出(stderr)。
例如:
```javascript
const { exec } = require('child_process');
let ery = exec('ls -l', (error, stdout, stderr) => {
if (error) {
console.error(`执行失败: ${error}`);
} else {
console.log(`命令输出:\n${stdout}`);
}
});
```
相关问题
We show that a fully convolutional network (FCN), trained end-to-end, pixels-to-pixels on semantic segmentation exceeds the state-of-the-art without further machinery. To our knowledge, this is the first work to train FCNs end-to-end (1) for pixelwise prediction and (2) from supervised pre-training. Fully convolutional versions of existing networks predict dense outputs from arbitrary-sized inputs. Both learning and inference are performed whole-image-ata-time by dense feedforward computation and backpropagation. In-network upsampling layers enable pixelwise prediction and learning in nets with subsampled pooling.怎么翻译
我们展示了一种完全卷积网络(FCN),通过端到端的像素级别语义分割训练,超过了现有的最先进技术,而无需其他改进。据我们所知,这是第一项将FCN从监督预训练开始端到端地进行像素级别预测的工作。现有网络的完全卷积版本可以从任意大小的输入中预测密集输出。学习和推断都通过密集的前向计算和反向传播一次处理整个图像完成。网络内部的上采样层可以在进行子采样池化的网络中进行像素级别的预测和学习。
public void export(CreditBalDistributionQueryDTO creditBalDistributionQueryDTO) { UserInfo uselnfo=UserContext.getUserinfo if (uselnfo == null) { log.info("获取登陆用户信息失败"); throw new BizException("获取登陆用户信息失败”) String instNo=uselnfo.getinstNo0; String instSname=commoninstService.getinstSnameByInstNo(instNo); List<List<String>> headData=new ArrayList<>0; String tpname=ReportCommoninfo.getintqlTpByCode(creditBalDistributionQueryDTO.getintglTpCd0); List<String>column1Head=new ArrayList<>0; String str=制表单位:"+instSname+"报表时间:"+ creditBalDistributionQueryDTO.getStatisDate +"积分类型:"+tpname; column1Head.add(“积分余额分布统计报表(按客户)”) column1Head.add(str); column1Head.add(“积分余额分段"); headData.add(column1Head); String filePath="excel/客户积分余额分布统计表查询报表.xlsx” File file = new File(filePath); if(!file.getParentFile().exists0) file.getParentFile().mkdirs); try(EasyBigExcelHandler handle =new EasyBigExcelHandler<CreditBalDistributionDO CreditBalDistributionDO>(1000,CreditBalDistributionDO.class,file,headData)) handle.setSheetNamePrefix("客户积分余额分布统计表查询报表"); sqlSessionTemplate.select ("com.psbc.pcps.credit.report.operateanalyze.dao.CreditBalDistributionMapper.pageQu ery". creditBalDistributionQueryDTO,handle): sqlSessionTemplate.clearCache0:} catch (IOException e) { //根据业务需要转换成BizException或者进行其他处理 throw new BizException("导出文件失败"); HttpServletResponse response= ((ServletRequestAttributes) RequestContextHolden .getRequestAttributes0).getResponse): try( SecureHttpUtils.exportExcel(response, file, file.getName(). true))catch(IOException e)( log.error("导出报表失败:*+e.getMessage())}请编写单元测试案例,需要使用mockito.lent.when.thenreturn
Sure, here's an example unit test case using Mockito:
```
@RunWith(MockitoJUnitRunner.class)
public class ExportTest {
@Mock
private UserInfo userInfo;
@Mock
private CommoninstService commoninstService;
@Mock
private ReportCommoninfo reportCommoninfo;
@Mock
private EasyBigExcelHandler<CreditBalDistributionDO> easyBigExcelHandler;
@Mock
private SqlSessionTemplate sqlSessionTemplate;
@Mock
private HttpServletResponse response;
@InjectMocks
private Export export;
@Test
public void testExport() throws Exception {
// Set up test data
CreditBalDistributionQueryDTO creditBalDistributionQueryDTO = new CreditBalDistributionQueryDTO();
creditBalDistributionQueryDTO.setintglTpCd0("123");
creditBalDistributionQueryDTO.setStatisDate("2022-01-01");
when(UserContext.getUserinfo()).thenReturn(userInfo);
when(userInfo.getinstNo0()).thenReturn("456");
when(commoninstService.getinstSnameByInstNo("456")).thenReturn("Test Institution");
when(reportCommoninfo.getintqlTpByCode("123")).thenReturn("Test Type");
List<List<String>> headData = new ArrayList<>();
List<String> column1Head = new ArrayList<>();
column1Head.add("积分余额分布统计报表(按客户)");
column1Head.add("制表单位:Test Institution报表时间:2022-01-01积分类型:Test Type");
column1Head.add("积分余额分段");
headData.add(column1Head);
File file = new File("excel/客户积分余额分布统计表查询报表.xlsx");
// Set up mock behavior for sqlSessionTemplate
List<CreditBalDistributionDO> result = new ArrayList<>();
CreditBalDistributionDO data = new CreditBalDistributionDO();
when(sqlSessionTemplate.select("com.psbc.pcps.credit.report.operateanalyze.dao.CreditBalDistributionMapper.pageQuery", creditBalDistributionQueryDTO, easyBigExcelHandler)).thenReturn(result);
// Call the method under test
export.export(creditBalDistributionQueryDTO);
// Verify expected behavior
verify(UserContext, times(1)).getUserinfo();
verify(userInfo, times(1)).getinstNo0();
verify(commoninstService, times(1)).getinstSnameByInstNo("456");
verify(reportCommoninfo, times(1)).getintqlTpByCode("123");
verify(sqlSessionTemplate, times(1)).select("com.psbc.pcps.credit.report.operateanalyze.dao.CreditBalDistributionMapper.pageQuery", creditBalDistributionQueryDTO, easyBigExcelHandler);
verify(easyBigExcelHandler, times(1)).setSheetNamePrefix("客户积分余额分布统计表查询报表");
verify(sqlSessionTemplate, times(1)).clearCache();
verify(response, times(1)).setContentType("application/octet-stream");
verify(response, times(1)).setHeader(eq("Content-Disposition"), anyString());
verify(SecureHttpUtils, times(1)).exportExcel(response, file, file.getName(), true);
}
}
```
阅读全文