相关性分析 python
时间: 2023-11-02 08:03:54 浏览: 236
MIC_mic算法_MIC_python_相关性分析
5星 · 资源好评率100%
相关性分析是对具有相关性的变量元素进行分析,以衡量它们之间的相关程度。可以使用不同的方法来进行相关性分析,包括皮尔逊相关系数、肯德尔相关系数和斯皮尔曼相关系数。
皮尔逊相关系数适用于连续性变量的相关性分析,肯德尔相关系数用于反映分类变量相关性的指标,适用于两个有序分类变量的情况,而斯皮尔曼相关系数是利用两个变量的秩次大小进行线性相关分析的方法,对数据的分布没有要求,属于非参数统计方法。
在Python中,使用pandas库可以进行相关性分析。可以使用`corr()`函数来计算相关系数。默认情况下,`method`参数设置为'pearson',表示使用皮尔逊相关系数。其他可选的方法包括'kendall'和'spearman'。
以下是一个示例代码,展示了如何使用pandas进行相关性分析:
```
import pandas as pd
data = pd.read_excel("D:\sheet\corr.xlsx")
df = data.iloc[:20,:] # 相关性分析的时候不需要用到均值和标准差
correlation_matrix = df.corr()
print(correlation_matrix)
```
以上代码将计算数据集中各个变量之间的相关系数,并打印出相关系数矩阵。
阅读全文