No Python at 'E:\DeskTop\python.exe'

时间: 2023-07-21 10:10:05 浏览: 241
问题是找不到位于 'E:\DeskTop\python.exe' 的 Python 解释器。这可能是由于以下原因之一: 1. Python 未正确安装:请确保您已经正确地安装了 Python,并且安装路径与 'E:\DeskTop\python.exe' 相匹配。您可以在命令行中输入 `python` 来验证是否正确安装了 Python。如果未找到,请重新安装 Python 并确保选择正确的安装路径。 2. 环境变量配置错误:如果您已经正确地安装了 Python,但系统仍然无法找到它,请检查您的环境变量配置。确保您已经将 Python 的安装路径添加到系统的 PATH 环境变量中。这样系统才能找到并执行 Python 解释器。 3. 文件路径错误:如果您的文件路径中包含拼写错误或错误的文件名,则系统将无法找到正确的 Python 解释器。请检查路径中的拼写和文件名是否正确。 请注意,Python 的默认安装路径通常是在 "C:\PythonXX"(其中 XX 是版本号)或者 "C:\Users\YourUsername\AppData\Local\Programs\Python\PythonXX"。如果您将 Python 安装在不同的位置,请相应地更正路径。 如果问题仍然存在,请提供更多详细信息,例如其他错误消息或任何其他相关信息,以便我能够更好地帮助您解决问题。
相关问题

pycharm显示No Python at C:\Users\86138\Desktop\python.exe

pycharm显示"No Python at C:\Users\86138\Desktop\python.exe"的错误表示pycharm无法找到指定路径下的Python解释器。可以通过以下方法解决这个问题: 1. 首先,确保你已经正确安装了Python解释器,并记下其安装路径。 2. 在PyCharm中打开项目,然后点击"File"菜单,选择"Settings"。 3. 在设置窗口的左侧,展开"Project Interpreter"选项。 4. 在右侧的解释器列表中,点击右上角的齿轮图标,选择"Add..."。 5. 在弹出的窗口中,选择"System Interpreter"。 6. 在下拉菜单中选择正确的Python解释器,并点击"OK"按钮。 7. 如果列表中没有你想要使用的解释器,你可以点击"Show All..."按钮,然后选择解释器的安装路径,或者手动添加解释器的路径。 8. 确认设置后,点击"OK"按钮保存更改。 现在,PyCharm应该能够找到并使用指定路径下的Python解释器了。<span class="em">1</span><span class="em">2</span> #### 引用[.reference_title] - *1* [D:\Anaconda\Anconda3\python.exe: No module named pip](https://blog.csdn.net/m0_66279156/article/details/125233744)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 50%"] - *2* [python+毕业设计《基于Android的新闻推荐客户端设计与实现》+源码+课程作业](https://download.csdn.net/download/qq_35831906/88227015)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 50%"] [ .reference_list ]

No Python at '"C:\Users\18249\Desktop\python.exe'

根据提供的引用内容,报错"No Python at 'C:\Users\???\AppData\Local\Programs\Python\Python38\python.exe'"和"No Python at ‘C:\Users\Administrator\AppData\Local\Programs\Python\Python\python.exe’"表明在指定的路径下找不到Python解释器。这可能是由于Python解释器的安装路径发生了变化或者被删除导致的。 为了解决这个问题,你可以尝试以下步骤: 1. 确认Python解释器的安装路径是否正确。你可以在命令行中输入`where python`或者`which python`来查看Python解释器的路径。 2. 如果路径不正确,你可以重新安装Python解释器,并确保安装路径正确。 3. 如果你已经安装了多个版本的Python解释器,你可以尝试在命令行中使用完整的Python解释器路径来运行你的代码,例如`C:\Python39\python.exe your_script.py`。 4. 如果你使用的是虚拟环境,请确保你已经激活了正确的虚拟环境。 5. 如果以上步骤都没有解决问题,你可以尝试卸载并重新安装Python解释器。 请注意,以上步骤仅供参考,具体操作可能因个人环境而异。如果问题仍然存在,请提供更多详细信息以便我们能够更好地帮助你解决问题。
阅读全文

相关推荐

"C:\Anaconda 3.8\python.exe" C:\Users\D2022\Desktop\h\main.py * Serving Flask app 'models' * Debug mode: off WARNING: This is a development server. Do not use it in a production deployment. Use a production WSGI server instead. * Running on http://127.0.0.1:5000 Press CTRL+C to quit C:\Users\D2022\Desktop\h\main.py:95: LegacyAPIWarning: The Query.get() method is considered legacy as of the 1.x series of SQLAlchemy and becomes a legacy construct in 2.0. The method is now available as Session.get() (deprecated since: 2.0) (Background on SQLAlchemy 2.0 at: https://sqlalche.me/e/b8d9) datas = models.User.query.get(stu_id) [2023-06-01 23:57:48,782] ERROR in app: Exception on / [GET] Traceback (most recent call last): File "C:\Anaconda 3.8\lib\site-packages\flask\app.py", line 2190, in wsgi_app response = self.full_dispatch_request() File "C:\Anaconda 3.8\lib\site-packages\flask\app.py", line 1486, in full_dispatch_request rv = self.handle_user_exception(e) File "C:\Anaconda 3.8\lib\site-packages\flask\app.py", line 1484, in full_dispatch_request rv = self.dispatch_request() File "C:\Anaconda 3.8\lib\site-packages\flask\app.py", line 1469, in dispatch_request return self.ensure_sync(self.view_functions[rule.endpoint])(**view_args) File "C:\Users\D2022\Desktop\h\main.py", line 100, in index return render_template('projects/table_s.html', datas=datas, results=results) File "C:\Anaconda 3.8\lib\site-packages\flask\templating.py", line 151, in render_template return _render(app, template, context) File "C:\Anaconda 3.8\lib\site-packages\flask\templating.py", line 132, in _render rv = template.render(context) File "C:\Anaconda 3.8\lib\site-packages\jinja2\environment.py", line 1301, in render self.environment.handle_exception() File "C:\Anaconda 3.8\lib\site-packages\jinja2\environment.py", line 936, in handle_exception raise rewrite_traceback_stack(source=source) File "C:\Users\D2022\Desktop\h\templates\projects\table_s.html", line 1, in top-level template code {% extends 'projects/base.html' %} File "C:\Users\D2022\Desktop\h\templates\projects\base.html", line 140, in top-level template code {% block content %} {% endblock %} File "C:\Users\D2022\Desktop\h\templates\projects\table_s.html", line 48, in block 'content' {{resu.jingdian | jiequ(20)}} File "C:\Users\D2022\Desktop\h\main.py", line 156, in jiequs if len(li) < num: TypeError: object of type 'NoneType' has no len() 127.0.0.1 - - [01/Jun/2023 23:57:48] "GET / HTTP/1.1" 500 -

2023-06-07 20:20:53.063803: W tensorflow/core/framework/op_kernel.cc:1780] OP_REQUIRES failed at summary_kernels.cc:65 : NOT_FOUND: Failed to create a NewWriteableFile: ./newData/GPUTest/CNNshape1__StudySpeed_0.001__Net_1.0__Len_1000__GoodStop_False__Batchsize_100__Epoch_300__attrName_time_OneByOne_SignDirect__dataPath_DataBaseTest__aimVPN_V2Ray/model/dnnb_lock1000\train/events.out.tfevents.1686140453.DESKTOP-3E6S8MQ.9084.0.v2 : ϵͳ�Ҳ���ָ����·���� ; No such process Creating writable file ./newData/GPUTest/CNNshape1__StudySpeed_0.001__Net_1.0__Len_1000__GoodStop_False__Batchsize_100__Epoch_300__attrName_time_OneByOne_SignDirect__dataPath_DataBaseTest__aimVPN_V2Ray/model/dnnb_lock1000\train/events.out.tfevents.1686140453.DESKTOP-3E6S8MQ.9084.0.v2 Could not initialize events writer. Traceback (most recent call last): File "D:\403\myworld\modelNew.py", line 315, in <module> StartNet(aimVpn,attrNameGet,dataBasePath) File "D:\403\myworld\modelNew.py", line 251, in StartNet history = dnn_b.fit(np.array(x2),np.array(y_APP),epochs=EPOCHS,batch_size=BATCH_SIZE,verbose=2,callbacks=[tensorboard],validation_split=0.3) File "E:\condaCache\condaEnv\tf3.9\lib\site-packages\keras\utils\traceback_utils.py", line 70, in error_handler raise e.with_traceback(filtered_tb) from None File "E:\condaCache\condaEnv\tf3.9\lib\site-packages\tensorflow\python\ops\gen_summary_ops.py", line 140, in create_summary_file_writer _result = pywrap_tfe.TFE_Py_FastPathExecute( UnicodeDecodeError: 'utf-8' codec can't decode byte 0xd5 in position 410: invalid continuation byte

Namespace(weights='yolo7.pt', cfg='cfg/training/yolov7.yaml', data='data/DOTA_split.yaml', hyp='data/hyp.scratch.p5.yaml', epochs=10, batch_size=4, img_size=[640, 640], rect=False, resume=False, nosave=False, notest=False, noautoanchor=False, evolve=False, bucket='', cache_images=False, image_weights=False, device='', multi_scale=False, single_cls=False, ada m=False, sync_bn=False, local_rank=-1, workers=8, project='runs/train', entity=None, name='exp', exist_ok=False, quad=False, linear_lr=False, label_smoothing=0.0, upload_dataset=False, bbox_interval=-1, save_period=-1, artifact_alias='latest', freeze=[0], v5_metric=False, world_size=1, global_rank=-1, save_dir='runs\\train\\exp2', total_batch_size=4) tensorboard: Start with 'tensorboard --logdir runs/train', view at http://localhost:6006/ hyperparameters: lr0=0.01, lrf=0.1, momentum=0.937, weight_decay=0.0005, warmup_epochs=3.0, warmup_momentum=0.8, warmup_bias_lr=0.1, box=0.05, cls=0.3, cls_pw=1.0, obj=0.7, obj_pw= 1.0, iou_t=0.2, anchor_t=4.0, fl_gamma=0.0, hsv_h=0.015, hsv_s=0.7, hsv_v=0.4, degrees=0.0, translate=0.2, scale=0.9, shear=0.0, perspective=0.0, flipud=0.0, fliplr=0.5, mosaic=1.0, mixup=0.15, copy_paste=0.0, paste_in=0.15, loss_ota=1 Traceback (most recent call last): File "D:\Documents\Desktop\YOLO_suanfa\yolov7-main\train.py", line 618, in <module> train(hyp, opt, device, tb_writer) File "D:\Documents\Desktop\YOLO_suanfa\yolov7-main\train.py", line 64, in train data_dict = yaml.load(f, Loader=yaml.SafeLoader) # data dict File "D:\Documents\Desktop\YOLO_suanfa\yolov7-main\venv\lib\site-packages\yaml\__init__.py", line 79, in load loader = Loader(stream) File "D:\Documents\Desktop\YOLO_suanfa\yolov7-main\venv\lib\site-packages\yaml\loader.py", line 34, in __init__ Reader.__init__(self, stream) File "D:\Documents\Desktop\YOLO_suanfa\yolov7-main\venv\lib\site-packages\yaml\reader.py", line 85, in __init__ self.determine_encoding() File "D:\Documents\Desktop\YOLO_suanfa\yolov7-main\venv\lib\site-packages\yaml\reader.py", line 124, in determine_encoding self.update_raw() File "D:\Documents\Desktop\YOLO_suanfa\yolov7-main\venv\lib\site-packages\yaml\reader.py", line 178, in update_raw data = self.stream.read(size) UnicodeDecodeError: 'gbk' codec can't decode byte 0x80 in position 233: illegal multibyte sequence

最新推荐

recommend-type

zip4j.jar包下载,版本为 2.11.5

zip4j.jar包下载,版本为 2.11.5
recommend-type

基于node.js完成登录

基于node.js完成登录
recommend-type

WildFly 8.x中Apache Camel结合REST和Swagger的演示

资源摘要信息:"CamelEE7RestSwagger:Camel on EE 7 with REST and Swagger Demo" 在深入分析这个资源之前,我们需要先了解几个关键的技术组件,它们是Apache Camel、WildFly、Java DSL、REST服务和Swagger。下面是这些知识点的详细解析: 1. Apache Camel框架: Apache Camel是一个开源的集成框架,它允许开发者采用企业集成模式(Enterprise Integration Patterns,EIP)来实现不同的系统、应用程序和语言之间的无缝集成。Camel基于路由和转换机制,提供了各种组件以支持不同类型的传输和协议,包括HTTP、JMS、TCP/IP等。 2. WildFly应用服务器: WildFly(以前称为JBoss AS)是一款开源的Java应用服务器,由Red Hat开发。它支持最新的Java EE(企业版Java)规范,是Java企业应用开发中的关键组件之一。WildFly提供了一个全面的Java EE平台,用于部署和管理企业级应用程序。 3. Java DSL(领域特定语言): Java DSL是一种专门针对特定领域设计的语言,它是用Java编写的小型语言,可以在Camel中用来定义路由规则。DSL可以提供更简单、更直观的语法来表达复杂的集成逻辑,它使开发者能够以一种更接近业务逻辑的方式来编写集成代码。 4. REST服务: REST(Representational State Transfer)是一种软件架构风格,用于网络上客户端和服务器之间的通信。在RESTful架构中,网络上的每个资源都被唯一标识,并且可以使用标准的HTTP方法(如GET、POST、PUT、DELETE等)进行操作。RESTful服务因其轻量级、易于理解和使用的特性,已经成为Web服务设计的主流风格。 5. Swagger: Swagger是一个开源的框架,它提供了一种标准的方式来设计、构建、记录和使用RESTful Web服务。Swagger允许开发者描述API的结构,这样就可以自动生成文档、客户端库和服务器存根。通过Swagger,可以清晰地了解API提供的功能和如何使用这些API,从而提高API的可用性和开发效率。 结合以上知识点,CamelEE7RestSwagger这个资源演示了如何在WildFly应用服务器上使用Apache Camel创建RESTful服务,并通过Swagger来记录和展示API信息。整个过程涉及以下几个技术步骤: - 首先,需要在WildFly上设置和配置Camel环境,确保Camel能够运行并且可以作为路由引擎来使用。 - 其次,通过Java DSL编写Camel路由,定义如何处理来自客户端的HTTP请求,并根据请求的不同执行相应的业务逻辑。 - 接下来,使用Swagger来记录和描述创建的REST API。这包括定义API的路径、支持的操作、请求参数和响应格式等。 - 最后,通过Swagger提供的工具生成API文档和客户端代码,以及服务器端的存根代码,从而使得开发者可以更加便捷地理解和使用这些RESTful服务。 这个资源的实践演示对于想要学习如何在Java EE平台上使用Camel集成框架,并且希望提供和记录REST服务的开发者来说是非常有价值的。通过这种方式,开发者可以更加快速和简单地创建和管理Web服务,同时也增强了API的可访问性和可维护性。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【声子晶体模拟全能指南】:20年经验技术大佬带你从入门到精通

![【声子晶体模拟全能指南】:20年经验技术大佬带你从入门到精通](https://docs.lammps.org/_images/lammps-gui-main.png) # 摘要 声子晶体作为一种具有周期性结构的材料,在声学隐身、微波和红外领域具有广泛的应用潜力。本文从基础理论出发,深入探讨了声子晶体的概念、物理模型和声子带结构的理论解析,同时介绍了声子晶体的数值模拟方法,包括有限元方法(FEM)、离散元方法(DEM)和分子动力学(MD)。本文还提供了一套完整的声子晶体模拟实践指南,涵盖了模拟前的准备工作、详细的模拟步骤以及结果验证和案例分析。此外,文章探讨了声子晶体模拟的高级技巧和拓展
recommend-type

2024-07-27怎么用python转换成农历日期

在Python中,可以使用`lunarcalendar`库来将公历日期转换为农历日期。首先,你需要安装这个库,可以通过pip命令进行安装: ```bash pip install lunarcalendar ``` 安装完成后,你可以使用以下代码将公历日期转换为农历日期: ```python from lunarcalendar import Converter, Solar, Lunar, DateNotExist # 创建一个公历日期对象 solar_date = Solar(2024, 7, 27) # 将公历日期转换为农历日期 try: lunar_date = Co
recommend-type

FDFS客户端Python库1.2.6版本发布

资源摘要信息:"FastDFS是一个开源的轻量级分布式文件系统,它对文件进行管理,功能包括文件存储、文件同步、文件访问等,适用于大规模文件存储和高并发访问场景。FastDFS为互联网应用量身定制,充分考虑了冗余备份、负载均衡、线性扩容等机制,保证系统的高可用性和扩展性。 FastDFS 架构包含两个主要的角色:Tracker Server 和 Storage Server。Tracker Server 作用是负载均衡和调度,它接受客户端的请求,为客户端提供文件访问的路径。Storage Server 作用是文件存储,一个 Storage Server 中可以有多个存储路径,文件可以存储在不同的路径上。FastDFS 通过 Tracker Server 和 Storage Server 的配合,可以完成文件上传、下载、删除等操作。 Python 客户端库 fdfs-client-py 是为了解决 FastDFS 文件系统在 Python 环境下的使用。fdfs-client-py 使用了 Thrift 协议,提供了文件上传、下载、删除、查询等接口,使得开发者可以更容易地利用 FastDFS 文件系统进行开发。fdfs-client-py 通常作为 Python 应用程序的一个依赖包进行安装。 针对提供的压缩包文件名 fdfs-client-py-master,这很可能是一个开源项目库的名称。根据文件名和标签“fdfs”,我们可以推测该压缩包包含的是 FastDFS 的 Python 客户端库的源代码文件。这些文件可以用于构建、修改以及扩展 fdfs-client-py 功能以满足特定需求。 由于“标题”和“描述”均与“fdfs-client-py-master1.2.6.zip”有关,没有提供其它具体的信息,因此无法从标题和描述中提取更多的知识点。而压缩包文件名称列表中只有一个文件“fdfs-client-py-master”,这表明我们目前讨论的资源摘要信息是基于对 FastDFS 的 Python 客户端库的一般性了解,而非基于具体文件内容的分析。 根据标签“fdfs”,我们可以深入探讨 FastDFS 相关的概念和技术细节,例如: - FastDFS 的分布式架构设计 - 文件上传下载机制 - 文件同步机制 - 元数据管理 - Tracker Server 的工作原理 - Storage Server 的工作原理 - 容错和数据恢复机制 - 系统的扩展性和弹性伸缩 在实际使用中,开发者可以通过 fdfs-client-py 库来与 FastDFS 文件系统进行交互,利用其提供的 API 接口实现文件的存储、管理等功能,从而开发出高效、可靠的文件处理应用。开发者可以根据项目的实际需求,选择合适的 FastDFS 版本,并根据官方文档进行安装、配置及优化,确保系统稳定运行。 总的来说,fdfs-client-py 是 FastDFS 文件系统与 Python 应用之间的一座桥梁,它使得开发者能够更加方便地将 FastDFS 集成到基于 Python 开发的应用中,发挥出 FastDFS 在文件管理方面的优势。"
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

传感器集成全攻略:ICM-42688-P运动设备应用详解

![传感器集成全攻略:ICM-42688-P运动设备应用详解](https://static.mianbaoban-assets.eet-china.com/xinyu-images/MBXY-CR-ba33fcfbde1d1207d7b8fe45b6ea58d0.png) # 摘要 ICM-42688-P传感器作为一种先进的惯性测量单元,广泛应用于多种运动设备中。本文首先介绍了ICM-42688-P传感器的基本概述和技术规格,然后深入探讨了其编程基础,包括软件接口、数据读取处理及校准测试。接着,本文详细分析了该传感器在嵌入式系统、运动控制和人机交互设备中的实践应用,并且探讨了高级功能开发,
recommend-type

matlab 中实现 astar

在MATLAB中,A*算法是一种用于求解最短路径问题的启发式搜索算法。它适用于带权重的图或网格,特别是当有大量潜在解决方案时,比如迷宫寻路问题。以下是使用MATLAB基本步骤来实现A*算法: 1. **数据结构准备**: - 创建一个二维数组表示地图,其中0代表可以通行的节点,其他值代表障碍物或边界。 - 定义一个队列(通常使用`prioritiesqueue`)来存储待探索的节点及其信息。 2. **初始化**: - 设定起始节点(start),目标节点(goal),以及每个节点的初始g值(从起点到该点的实际代价)和f值(g值加上估计的h值,即启发函数)。 3.