实验二 编写具体函数实现以下四种具体操作: (1)二叉排序树的递归查找 (2)二叉排序树的插入 (3)二叉排序树的创建 (4)二叉排序树的删除

时间: 2024-06-19 10:02:07 浏览: 99
好的,实验二主要是针对二叉排序树的相关操作进行编写,包括递归查找、插入、创建和删除四种具体操作。 1. 二叉排序树的递归查找:通过递归遍历二叉排序树,判断要查找的值是否等于当前节点的值,如果等于则返回该节点,否则判断要查找的值是在当前节点的左子树还是右子树,然后继续递归查找。 2. 二叉排序树的插入:从根节点开始遍历,找到要插入的位置,如果该位置为空,则新建一个节点并插入到该位置,否则继续遍历到下一层。 3. 二叉排序树的创建:通过读入一组数据,依次插入到二叉排序树中来创建一个二叉排序树。 4. 二叉排序树的删除:首先在二叉排序树中查找要删除的节点,如果该节点有两个子节点,则将其右子树中最小的节点(即右子树中最左边的节点)替换该节点,并将该节点删除。如果该节点只有一个子节点,则将该子节点替换该节点,并将该节点删除。如果该节点没有子节点,则直接删除该节点。
相关问题

根据二叉排序树的抽象数据类型的定义,使用二叉链表实现一个二叉排序树。 二叉排序树的基本功能: •二叉排序树的建立 2、二叉排序树的查找 3、二叉排序树的插入 4、 二叉排序树的删除 5、 二叉排序树的销毁 6、其他:自定义操作 编写测试 main()函数测试二叉排序树的正确性。

<< 二叉排序树(Binary Search Tree, BST)是一种特殊的二叉树,其中每个节点的值大于其左子树中所有节点的值,并且小于其右子树中所有节点的值。这使得在二叉排序树中查找、插入和删除元素变得非常高效。 **根据二叉链表实现二叉排序树的步骤:** 1. **二叉排序树的建立** (Insertion): - 创建一个空链表作为根节点。 - 当接收到新元素时,从根节点开始比较,如果新元素小于当前节点,向左子链表插入;如果新元素大于当前节点,向右子链表插入。递归这个过程直到找到合适的位置。 2. **二叉排序树的查找** (Traversal): - 从根节点开始,对比目标值与节点值,如果相等则返回该节点,如果不等则根据大小关系继续在左或右子链表中查找。 3. **二叉排序树的插入** (Insertion): - 删除操作分为三类:删除叶子节点、删除只有一个子节点的非叶子节点和删除有两个子节点的非叶子节点。需考虑替换、旋转等复杂情况。 5. **二叉排序树的销毁** (Deletion of the tree): - 可以通过中序遍历二叉树,对每个节点执行析构操作,释放内存。 6. **自定义操作** (Custom Operations): - 可以实现如最小值、最大值、前驱后继节点查找、范围查找等高级操作。 **测试main()函数**: - 创建一个二叉排序树实例。 - 遍历并打印树中的所有元素,检查是否按顺序排列。 - 插入元素,检查是否成功插入。 - 查找特定元素,确认能否找到。 - 删除元素并再次验证结构的正确性。 - 对树执行自定义操作,验证结果。 测试代码示例: ```c++ // 假设BSTNode是一个包含值、左指针和右指针的链表节点结构体 BSTNode* createBST(BSTNode* root, int value) { // 插入实现省略 } BSTNode* searchBST(BSTNode* root, int value) { // 查找实现省略 } BSTNode* deleteBST(BSTNode* root, int value) { // 删除实现省略 } void destroyBST(BSTNode* root) { if (root) { destroyBST(root->left); destroyBST(root->right); delete root; } } int main() { BSTNode* root = nullptr; // 初始化为空 // 创建树、插入元素、查找元素、删除元素 // 执行自定义操作 // 检查main结束时,销毁BST return 0; }

编写二叉排序树的操作函数,并在main主函数中依次调用基本操作函数。①建立二叉排序树。②二叉排序树的插入。③二叉排序树的查找。④树的遍历。注意什么

好的,这是一个关于二叉排序树的问题。我会尽力回答你的问题。 首先,二叉排序树是一种特殊的二叉树,它的每个节点都包含一个关键字,且满足左子树的关键字都小于根节点的关键字,右子树的关键字都大于根节点的关键字。二叉排序树具有以下性质: 1. 对于二叉排序树中的任意节点,它的左子树中的所有节点的关键字都小于该节点的关键字,右子树中的所有节点的关键字都大于该节点的关键字; 2. 对于二叉排序树中的任意节点,它的左子树和右子树也是二叉排序树。 接下来,我们来分别实现建立二叉排序树、二叉排序树的插入、二叉排序树的查找和树的遍历。 建立二叉排序树的函数实现: ``` struct TreeNode { int val; TreeNode* left; TreeNode* right; TreeNode(int x) : val(x), left(NULL), right(NULL) {} }; TreeNode* createBST(vector<int>& nums) { if (nums.empty()) { return NULL; } TreeNode* root = new TreeNode(nums[0]); for (int i = 1; i < nums.size(); i++) { TreeNode* cur = root; while (cur) { if (nums[i] < cur->val) { if (cur->left) { cur = cur->left; } else { cur->left = new TreeNode(nums[i]); break; } } else { if (cur->right) { cur = cur->right; } else { cur->right = new TreeNode(nums[i]); break; } } } } return root; } ``` 二叉排序树的插入函数实现: ``` TreeNode* insertBST(TreeNode* root, int val) { if (!root) { return new TreeNode(val); } if (val < root->val) { root->left = insertBST(root->left, val); } else if (val > root->val) { root->right = insertBST(root->right, val); } return root; } ``` 二叉排序树的查找函数实现: ``` bool searchBST(TreeNode* root, int val) { if (!root) { return false; } if (root->val == val) { return true; } else if (root->val > val) { return searchBST(root->left, val); } else { return searchBST(root->right, val); } } ``` 树的遍历函数实现: ``` void inorderTraversal(TreeNode* root) { if (root) { inorderTraversal(root->left); cout << root->val << " "; inorderTraversal(root->right); } } void preorderTraversal(TreeNode* root) { if (root) { cout << root->val << " "; preorderTraversal(root->left); preorderTraversal(root->right); } } void postorderTraversal(TreeNode* root) { if (root) { postorderTraversal(root->left); postorderTraversal(root->right); cout << root->val << " "; } } ``` 在 main 函数中调用这些函数: ``` int main() { vector<int> nums = {5, 3, 7, 2, 4, 6, 8}; TreeNode* root = createBST(nums); inorderTraversal(root); cout << endl; preorderTraversal(root); cout << endl; postorderTraversal(root); cout << endl; insertBST(root, 1); inorderTraversal(root); cout << endl; insertBST(root, 9); inorderTraversal(root); cout << endl; cout << searchBST(root, 4) << endl; cout << searchBST(root, 10) << endl; return 0; } ``` 需要注意以下几点: 1. 建立二叉排序树时,需要注意处理 nums 为空的情况。 2. 插入元素时,需要递归寻找插入位置。 3. 查找时,需要递归查找。 4. 遍历时,需要注意遍历顺序。 以上是关于二叉排序树的基本操作函数的实现和使用方法,希望能对你有所帮助。
阅读全文

相关推荐

大家在看

recommend-type

新项目基于YOLOv8的人员溺水检测告警监控系统python源码(精确度高)+模型+评估指标曲线+精美GUI界面.zip

新项目基于YOLOv8的人员溺水检测告警监控系统python源码(精确度高)+模型+评估指标曲线+精美GUI界面.zip 【环境配置】 1、下载安装anaconda、pycharm 2、打开anaconda,在anaconda promt终端,新建一个python3.9的虚拟环境 3、激活该虚拟空间,然后pip install -r requirements.txt,安装里面的软件包 4、识别检测['Drowning', 'Person out of water', 'Swimming'] 【运行操作】 以上环境配置成功后,运行main.py,打开界面,自动加载模型,开始测试即可 可以检测本地图片、视频、摄像头实时画面 【数据集】 本项目使用的数据集下载地址为: https://download.csdn.net/download/DeepLearning_/89398245 【特别强调】 1、csdn上资源保证是完整最新,会不定期更新优化; 2、请用自己的账号在csdn官网下载,若通过第三方代下,博主不对您下载的资源作任何保证,且不提供任何形式的技术支持和答疑!!!
recommend-type

SPiiPlus ACSPL+ Command & Variable Reference Guide.pdf

SPiiPlus ACSPL+驱动器编程命令说明书。驱动器编程命令语言说明。可参看驱动器编程。SPiiPlus ACSPL+ Command & Variable Reference Guide
recommend-type

论文研究 - 基于UPQC的电能质量模糊控制器的实现。

本文介绍了有关统一电能质量调节器(UPQC)的总体检查,以在电气系统的配电级别上激发电能问题。 如今,电力电子研究已经增加了电能质量研究的重要性,对于具体示例,定制功率设备(CPD)和柔性交流输电位置(FACTS)设备而言,这非常重要。 本文提供的方法利用统一电能质量调节器(UPQC)的串联和并联补偿器,在电压波动时与源电流同相注入补偿电压。 基于模糊逻辑控制器,研究了UPQC两种结构在左,右分流(L-UPQC)和右-分流(R-UPQC)的执行情况,以提高单个馈线配电系统的电能质量价值。通过MATLAB / Simulink编程。 这项研究分析了各种电能质量问题。 最后,在此建议的电源系统中,右分流UPQC的性能优于。
recommend-type

ChinaTest2013-测试人的能力和发展-杨晓慧

测试人的能力和发展-杨晓慧(华为)--ChinaTest2013大会主题演讲PPT。
recommend-type

Pattern Recognition and Machine Learning习题答案(英文)

Pattern Recognition and Machine Learning习题答案(英文)

最新推荐

recommend-type

用C语言编写二叉排序树

二叉排序树(Binary Sort Tree,BST)是一种特殊的二叉树结构,它的每个节点都满足以下条件: 1. 如果节点的左子树不为空,那么左子树上的所有节点的值都小于当前节点的值。 2. 如果节点的右子树不为空,那么右子树...
recommend-type

二叉排序树运算课程设计报告

二叉排序树是一种特殊的二叉树,其每个节点的左...通过构造二叉排序树并实现查找、插入和删除操作,我们可以理解其工作原理,并对比不同存储结构的优缺点。这个课程设计有助于巩固这些概念,提升编程和问题解决能力。
recommend-type

数据结构——第9章 数据结构 anyview作业系统答案

在上述内容中,我们看到三个主要知识点:静态查找表的线性搜索、折半查找的递归实现以及二叉排序树的判断。 1. **静态查找表的线性搜索**(9.25) 在这个问题中,`Search` 函数用于在静态查找表 `SSTable` 中找到...
recommend-type

《数据结构》C语言版 实验报告 (基础共7个实验含代码和结果)

哈希表是一种高效的数据存储结构,通过哈希函数将数据映射到有限的存储空间,允许快速查找、插入和删除操作。实验中可能需要设计哈希表,并解决哈希冲突问题,以提高数据查找效率。 排序是数据处理的关键步骤,实验...
recommend-type

Introduction to algorithm, solution

8. **二叉搜索树**(第十二章):介绍了二叉搜索树的性质和操作,如插入、删除和查找。 9. **红黑树**(第十三章):这是一种自平衡二叉查找树,确保了操作的时间复杂度是近似的O(log n)。 10. **增强数据结构**...
recommend-type

WildFly 8.x中Apache Camel结合REST和Swagger的演示

资源摘要信息:"CamelEE7RestSwagger:Camel on EE 7 with REST and Swagger Demo" 在深入分析这个资源之前,我们需要先了解几个关键的技术组件,它们是Apache Camel、WildFly、Java DSL、REST服务和Swagger。下面是这些知识点的详细解析: 1. Apache Camel框架: Apache Camel是一个开源的集成框架,它允许开发者采用企业集成模式(Enterprise Integration Patterns,EIP)来实现不同的系统、应用程序和语言之间的无缝集成。Camel基于路由和转换机制,提供了各种组件以支持不同类型的传输和协议,包括HTTP、JMS、TCP/IP等。 2. WildFly应用服务器: WildFly(以前称为JBoss AS)是一款开源的Java应用服务器,由Red Hat开发。它支持最新的Java EE(企业版Java)规范,是Java企业应用开发中的关键组件之一。WildFly提供了一个全面的Java EE平台,用于部署和管理企业级应用程序。 3. Java DSL(领域特定语言): Java DSL是一种专门针对特定领域设计的语言,它是用Java编写的小型语言,可以在Camel中用来定义路由规则。DSL可以提供更简单、更直观的语法来表达复杂的集成逻辑,它使开发者能够以一种更接近业务逻辑的方式来编写集成代码。 4. REST服务: REST(Representational State Transfer)是一种软件架构风格,用于网络上客户端和服务器之间的通信。在RESTful架构中,网络上的每个资源都被唯一标识,并且可以使用标准的HTTP方法(如GET、POST、PUT、DELETE等)进行操作。RESTful服务因其轻量级、易于理解和使用的特性,已经成为Web服务设计的主流风格。 5. Swagger: Swagger是一个开源的框架,它提供了一种标准的方式来设计、构建、记录和使用RESTful Web服务。Swagger允许开发者描述API的结构,这样就可以自动生成文档、客户端库和服务器存根。通过Swagger,可以清晰地了解API提供的功能和如何使用这些API,从而提高API的可用性和开发效率。 结合以上知识点,CamelEE7RestSwagger这个资源演示了如何在WildFly应用服务器上使用Apache Camel创建RESTful服务,并通过Swagger来记录和展示API信息。整个过程涉及以下几个技术步骤: - 首先,需要在WildFly上设置和配置Camel环境,确保Camel能够运行并且可以作为路由引擎来使用。 - 其次,通过Java DSL编写Camel路由,定义如何处理来自客户端的HTTP请求,并根据请求的不同执行相应的业务逻辑。 - 接下来,使用Swagger来记录和描述创建的REST API。这包括定义API的路径、支持的操作、请求参数和响应格式等。 - 最后,通过Swagger提供的工具生成API文档和客户端代码,以及服务器端的存根代码,从而使得开发者可以更加便捷地理解和使用这些RESTful服务。 这个资源的实践演示对于想要学习如何在Java EE平台上使用Camel集成框架,并且希望提供和记录REST服务的开发者来说是非常有价值的。通过这种方式,开发者可以更加快速和简单地创建和管理Web服务,同时也增强了API的可访问性和可维护性。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【声子晶体模拟全能指南】:20年经验技术大佬带你从入门到精通

![【声子晶体模拟全能指南】:20年经验技术大佬带你从入门到精通](https://docs.lammps.org/_images/lammps-gui-main.png) # 摘要 声子晶体作为一种具有周期性结构的材料,在声学隐身、微波和红外领域具有广泛的应用潜力。本文从基础理论出发,深入探讨了声子晶体的概念、物理模型和声子带结构的理论解析,同时介绍了声子晶体的数值模拟方法,包括有限元方法(FEM)、离散元方法(DEM)和分子动力学(MD)。本文还提供了一套完整的声子晶体模拟实践指南,涵盖了模拟前的准备工作、详细的模拟步骤以及结果验证和案例分析。此外,文章探讨了声子晶体模拟的高级技巧和拓展
recommend-type

2024-07-27怎么用python转换成农历日期

在Python中,可以使用`lunarcalendar`库来将公历日期转换为农历日期。首先,你需要安装这个库,可以通过pip命令进行安装: ```bash pip install lunarcalendar ``` 安装完成后,你可以使用以下代码将公历日期转换为农历日期: ```python from lunarcalendar import Converter, Solar, Lunar, DateNotExist # 创建一个公历日期对象 solar_date = Solar(2024, 7, 27) # 将公历日期转换为农历日期 try: lunar_date = Co
recommend-type

FDFS客户端Python库1.2.6版本发布

资源摘要信息:"FastDFS是一个开源的轻量级分布式文件系统,它对文件进行管理,功能包括文件存储、文件同步、文件访问等,适用于大规模文件存储和高并发访问场景。FastDFS为互联网应用量身定制,充分考虑了冗余备份、负载均衡、线性扩容等机制,保证系统的高可用性和扩展性。 FastDFS 架构包含两个主要的角色:Tracker Server 和 Storage Server。Tracker Server 作用是负载均衡和调度,它接受客户端的请求,为客户端提供文件访问的路径。Storage Server 作用是文件存储,一个 Storage Server 中可以有多个存储路径,文件可以存储在不同的路径上。FastDFS 通过 Tracker Server 和 Storage Server 的配合,可以完成文件上传、下载、删除等操作。 Python 客户端库 fdfs-client-py 是为了解决 FastDFS 文件系统在 Python 环境下的使用。fdfs-client-py 使用了 Thrift 协议,提供了文件上传、下载、删除、查询等接口,使得开发者可以更容易地利用 FastDFS 文件系统进行开发。fdfs-client-py 通常作为 Python 应用程序的一个依赖包进行安装。 针对提供的压缩包文件名 fdfs-client-py-master,这很可能是一个开源项目库的名称。根据文件名和标签“fdfs”,我们可以推测该压缩包包含的是 FastDFS 的 Python 客户端库的源代码文件。这些文件可以用于构建、修改以及扩展 fdfs-client-py 功能以满足特定需求。 由于“标题”和“描述”均与“fdfs-client-py-master1.2.6.zip”有关,没有提供其它具体的信息,因此无法从标题和描述中提取更多的知识点。而压缩包文件名称列表中只有一个文件“fdfs-client-py-master”,这表明我们目前讨论的资源摘要信息是基于对 FastDFS 的 Python 客户端库的一般性了解,而非基于具体文件内容的分析。 根据标签“fdfs”,我们可以深入探讨 FastDFS 相关的概念和技术细节,例如: - FastDFS 的分布式架构设计 - 文件上传下载机制 - 文件同步机制 - 元数据管理 - Tracker Server 的工作原理 - Storage Server 的工作原理 - 容错和数据恢复机制 - 系统的扩展性和弹性伸缩 在实际使用中,开发者可以通过 fdfs-client-py 库来与 FastDFS 文件系统进行交互,利用其提供的 API 接口实现文件的存储、管理等功能,从而开发出高效、可靠的文件处理应用。开发者可以根据项目的实际需求,选择合适的 FastDFS 版本,并根据官方文档进行安装、配置及优化,确保系统稳定运行。 总的来说,fdfs-client-py 是 FastDFS 文件系统与 Python 应用之间的一座桥梁,它使得开发者能够更加方便地将 FastDFS 集成到基于 Python 开发的应用中,发挥出 FastDFS 在文件管理方面的优势。"