BP神经网络反向传播算法

时间: 2024-05-10 11:13:14 浏览: 10
BP神经网络反向传播算法是一种常见的人工神经网络算法,用于训练多层前馈神经网络。它的基本思想是通过前向传播将输入样本在网络中逐层传递,得到输出结果,然后将输出结果与期望输出进行比较,计算误差,并通过反向传播将误差逐层返回到网络中,调整神经元之间的连接权重,从而不断优化网络的性能。 具体来说,BP神经网络反向传播算法主要分为两个过程:前向传播和误差反向传播。 前向传播时,输入样本在神经网络中逐层传递,直到输出层得到输出结果。在每一层中,输入值和权值通过一个激活函数得到输出值,并作为下一层的输入值。 误差反向传播时,首先计算输出层的误差,并将误差逐层反向传递到输入层。在每一层中,根据误差和激活函数的导数计算出每个神经元对误差的贡献,并将误差分配给连接权重。然后根据误差和学习率更新连接权重,以减小误差。
相关问题

arduino编写bp神经网络反向传播算法代码及讲解

BP神经网络的反向传播算法是一种常用的人工神经网络算法。它是一种有监督学习算法,具有较好的非线性映射能力和逼近性能。在Arduino上实现BP神经网络反向传播算法需要以下步骤: 1. 搭建BP神经网络结构 BP神经网络结构包括输入层、隐层和输出层。输入层接收输入数据,隐层进行特征提取,输出层输出结果。在Arduino中,可以使用数组来模拟神经元和神经网络的连接。 2. 初始化权值和偏置 BP神经网络的训练过程需要初始化权值和偏置。权值和偏置的初始化可以使用随机数函数来实现。 3. 前向传播 在前向传播过程中,输入数据通过输入层传递到隐层,再通过隐层传递到输出层。每个神经元在接收到输入信号后,会根据自身的权值和偏置进行加权求和,并经过激活函数后输出。 4. 计算误差和损失函数 BP神经网络的训练过程是基于误差反向传播的,因此需要计算误差和损失函数。误差可以使用均方误差函数来计算。 5. 反向传播 在反向传播过程中,误差从输出层开始向前传递,通过链式法则计算每层的误差和权值的梯度。然后根据梯度下降算法更新权值和偏置。 6. 更新权值和偏置 根据梯度下降算法更新权值和偏置,使得损失函数逐步减小,神经网络的训练效果逐步提高。 7. 迭代训练 重复进行前向传播、误差计算、反向传播和权值更新的过程,直到损失函数收敛或达到预设的训练次数为止。 下面是一个简单的Arduino代码实现BP神经网络反向传播算法: ```c++ #include <math.h> #define INPUT_NUM 2 #define HIDDEN_NUM 4 #define OUTPUT_NUM 1 #define LEARNING_RATE 0.5 #define EPOCHS 5000 float input[INPUT_NUM]; float hidden[HIDDEN_NUM]; float output[OUTPUT_NUM]; float target[OUTPUT_NUM]; float hidden_bias[HIDDEN_NUM]; float output_bias[OUTPUT_NUM]; float hidden_weights[INPUT_NUM][HIDDEN_NUM]; float output_weights[HIDDEN_NUM][OUTPUT_NUM]; float sigmoid(float x) { return 1.0 / (1.0 + exp(-x)); } void init_weights_bias() { for (int i = 0; i < HIDDEN_NUM; i++) { hidden_bias[i] = random(10) - 5; output_bias[0] = random(10) - 5; for (int j = 0; j < INPUT_NUM; j++) { hidden_weights[j][i] = random(10) - 5; } } for (int i = 0; i < OUTPUT_NUM; i++) { for (int j = 0; j < HIDDEN_NUM; j++) { output_weights[j][i] = random(10) - 5; } } } void forward() { for (int i = 0; i < HIDDEN_NUM; i++) { hidden[i] = 0; for (int j = 0; j < INPUT_NUM; j++) { hidden[i] += input[j] * hidden_weights[j][i]; } hidden[i] += hidden_bias[i]; hidden[i] = sigmoid(hidden[i]); } output[0] = 0; for (int i = 0; i < HIDDEN_NUM; i++) { output[0] += hidden[i] * output_weights[i][0]; } output[0] += output_bias[0]; output[0] = sigmoid(output[0]); } void backward() { float output_error = target[0] - output[0]; float output_delta = output_error * output[0] * (1 - output[0]); float hidden_error[HIDDEN_NUM]; float hidden_delta[HIDDEN_NUM]; for (int i = 0; i < HIDDEN_NUM; i++) { hidden_error[i] = output_delta * output_weights[i][0]; hidden_delta[i] = hidden_error[i] * hidden[i] * (1 - hidden[i]); } for (int i = 0; i < HIDDEN_NUM; i++) { for (int j = 0; j < OUTPUT_NUM; j++) { output_weights[i][j] += LEARNING_RATE * output_delta * hidden[i]; } } for (int i = 0; i < INPUT_NUM; i++) { for (int j = 0; j < HIDDEN_NUM; j++) { hidden_weights[i][j] += LEARNING_RATE * hidden_delta[j] * input[i]; } } for (int i = 0; i < HIDDEN_NUM; i++) { hidden_bias[i] += LEARNING_RATE * hidden_delta[i]; } output_bias[0] += LEARNING_RATE * output_delta; } void train() { for (int i = 0; i < EPOCHS; i++) { forward(); backward(); } } void setup() { Serial.begin(9600); randomSeed(analogRead(0)); init_weights_bias(); } void loop() { input[0] = random(10) / 10.0; input[1] = random(10) / 10.0; target[0] = input[0] * input[1]; train(); Serial.print("Input: "); Serial.print(input[0]); Serial.print(","); Serial.print(input[1]); Serial.print(" Target: "); Serial.print(target[0]); Serial.print(" Output: "); Serial.println(output[0]); delay(1000); } ``` 代码中使用了sigmoid函数作为激活函数,使用均方误差函数计算误差,使用随机数函数初始化权值和偏置,使用梯度下降算法更新权值和偏置。在Arduino上运行代码,可以模拟BP神经网络进行乘法运算的训练过程,并输出每次训练的输入、目标和输出结果。

arduino编写3*5*3bp神经网络反向传播算法代码及讲解

首先,需要明确的是,Arduino的处理能力比较有限,无法直接进行神经网络的训练。因此,针对Arduino的神经网络通常是预先训练好的,然后将训练好的权重参数加载到Arduino中,进行预测。 以下是一个简单的3x5x3BP神经网络的反向传播算法的代码实现及讲解,其中使用的是Arduino的神经网络库FANN。 ``` #include <FANN.h> // 定义神经网络的结构 const unsigned int num_input = 3; const unsigned int num_hidden = 5; const unsigned int num_output = 3; // 创建一个神经网络对象 FANN::neural_net net; void setup() { // 加载预先训练好的神经网络权重参数 net.create_from_file("network.net"); } void loop() { // 定义输入向量 fann_type input[3] = {1.0, 0.0, 0.0}; // 运行神经网络,得到输出向量 fann_type* output = net.run(input); // 输出结果 Serial.print("Output: "); Serial.print(output[0]); Serial.print(", "); Serial.print(output[1]); Serial.print(", "); Serial.println(output[2]); // 等待一段时间,进行下一次预测 delay(1000); } ``` 在上述代码中,我们首先定义了一个3x5x3的BP神经网络结构,然后创建了一个神经网络对象。在setup函数中,我们加载了预先训练好的神经网络权重参数,这里使用的是FANN库提供的create_from_file函数。 在loop函数中,我们定义了一个输入向量,然后调用神经网络对象的run函数进行预测。最后,我们输出了神经网络的输出结果,并等待一段时间进行下一次预测。 需要注意的是,以上代码仅供参考,实际应用中需要根据具体的神经网络结构和数据进行修改。

相关推荐

最新推荐

recommend-type

Python实现的三层BP神经网络算法示例

这是一个非常漂亮的三层反向传播神经网络的python实现,下一步我准备试着将其修改为多层BP神经网络。 下面是运行演示函数的截图,你会发现预测的结果很惊人! 提示:运行演示函数的时候,可以尝试改变隐藏层的节点...
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【实战演练】MATLAB用遗传算法改进粒子群GA-PSO算法

![MATLAB智能算法合集](https://static.fuxi.netease.com/fuxi-official/web/20221101/83f465753fd49c41536a5640367d4340.jpg) # 2.1 遗传算法的原理和实现 遗传算法(GA)是一种受生物进化过程启发的优化算法。它通过模拟自然选择和遗传机制来搜索最优解。 **2.1.1 遗传算法的编码和解码** 编码是将问题空间中的解表示为二进制字符串或其他数据结构的过程。解码是将编码的解转换为问题空间中的实际解的过程。常见的编码方法包括二进制编码、实数编码和树形编码。 **2.1.2 遗传算法的交叉和
recommend-type

openstack的20种接口有哪些

以下是OpenStack的20种API接口: 1. Identity (Keystone) API 2. Compute (Nova) API 3. Networking (Neutron) API 4. Block Storage (Cinder) API 5. Object Storage (Swift) API 6. Image (Glance) API 7. Telemetry (Ceilometer) API 8. Orchestration (Heat) API 9. Database (Trove) API 10. Bare Metal (Ironic) API 11. DNS
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

【实战演练】时间序列预测用于个体家庭功率预测_ARIMA, xgboost, RNN

![【实战演练】时间序列预测用于个体家庭功率预测_ARIMA, xgboost, RNN](https://img-blog.csdnimg.cn/img_convert/5587b4ec6abfc40c76db14fbef6280db.jpeg) # 1. 时间序列预测简介** 时间序列预测是一种预测未来值的技术,其基于历史数据中的时间依赖关系。它广泛应用于各种领域,例如经济、金融、能源和医疗保健。时间序列预测模型旨在捕捉数据中的模式和趋势,并使用这些信息来预测未来的值。 # 2. 时间序列预测方法 时间序列预测方法是利用历史数据来预测未来趋势或值的统计技术。在时间序列预测中,有许多不
recommend-type

怎么在集群安装安装hbase

您好,关于如何在集群上安装HBase,步骤大致如下: 1. 在HBase官网上下载最新版本的HBase,并解压到需要安装的目录下; 2. 配置HBase的环境变量:将HBase目录的bin子目录加入到PATH环境变量中; 3. 修改HBase配置文件:在HBase目录下的conf子目录中找到hbase-site.xml文件,并进行相应的配置,如指定HBase的Zookeeper节点等; 4. 启动HBase:使用HBase的bin目录下的start-hbase.sh脚本启动HBase; 5. 验证HBase是否正常运行:使用HBase自带的shell命令行工具操作HBase。 注意:以上步
recommend-type

c++校园超市商品信息管理系统课程设计说明书(含源代码) (2).pdf

校园超市商品信息管理系统课程设计旨在帮助学生深入理解程序设计的基础知识,同时锻炼他们的实际操作能力。通过设计和实现一个校园超市商品信息管理系统,学生掌握了如何利用计算机科学与技术知识解决实际问题的能力。在课程设计过程中,学生需要对超市商品和销售员的关系进行有效管理,使系统功能更全面、实用,从而提高用户体验和便利性。 学生在课程设计过程中展现了积极的学习态度和纪律,没有缺勤情况,演示过程流畅且作品具有很强的使用价值。设计报告完整详细,展现了对问题的深入思考和解决能力。在答辩环节中,学生能够自信地回答问题,展示出扎实的专业知识和逻辑思维能力。教师对学生的表现予以肯定,认为学生在课程设计中表现出色,值得称赞。 整个课程设计过程包括平时成绩、报告成绩和演示与答辩成绩三个部分,其中平时表现占比20%,报告成绩占比40%,演示与答辩成绩占比40%。通过这三个部分的综合评定,最终为学生总成绩提供参考。总评分以百分制计算,全面评估学生在课程设计中的各项表现,最终为学生提供综合评价和反馈意见。 通过校园超市商品信息管理系统课程设计,学生不仅提升了对程序设计基础知识的理解与应用能力,同时也增强了团队协作和沟通能力。这一过程旨在培养学生综合运用技术解决问题的能力,为其未来的专业发展打下坚实基础。学生在进行校园超市商品信息管理系统课程设计过程中,不仅获得了理论知识的提升,同时也锻炼了实践能力和创新思维,为其未来的职业发展奠定了坚实基础。 校园超市商品信息管理系统课程设计的目的在于促进学生对程序设计基础知识的深入理解与掌握,同时培养学生解决实际问题的能力。通过对系统功能和用户需求的全面考量,学生设计了一个实用、高效的校园超市商品信息管理系统,为用户提供了更便捷、更高效的管理和使用体验。 综上所述,校园超市商品信息管理系统课程设计是一项旨在提升学生综合能力和实践技能的重要教学活动。通过此次设计,学生不仅深化了对程序设计基础知识的理解,还培养了解决实际问题的能力和团队合作精神。这一过程将为学生未来的专业发展提供坚实基础,使其在实际工作中能够胜任更多挑战。