BP神经网络反向传播算法
时间: 2024-05-10 18:13:14 浏览: 136
BP.zip_BP 神经网络_visual c
BP神经网络反向传播算法是一种常见的人工神经网络算法,用于训练多层前馈神经网络。它的基本思想是通过前向传播将输入样本在网络中逐层传递,得到输出结果,然后将输出结果与期望输出进行比较,计算误差,并通过反向传播将误差逐层返回到网络中,调整神经元之间的连接权重,从而不断优化网络的性能。
具体来说,BP神经网络反向传播算法主要分为两个过程:前向传播和误差反向传播。
前向传播时,输入样本在神经网络中逐层传递,直到输出层得到输出结果。在每一层中,输入值和权值通过一个激活函数得到输出值,并作为下一层的输入值。
误差反向传播时,首先计算输出层的误差,并将误差逐层反向传递到输入层。在每一层中,根据误差和激活函数的导数计算出每个神经元对误差的贡献,并将误差分配给连接权重。然后根据误差和学习率更新连接权重,以减小误差。
阅读全文