df = pd.DataFrame("班级":["一年级","二年级","三年级","四年级"], ^ SyntaxError: invalid syntax
时间: 2023-11-03 14:00:29 浏览: 91
df = pd.DataFrame("班级":["一年级","二年级","三年级","四年级"],
"人数":[30,40,35,45])
上述代码出现了语法错误。在创建DataFrame时,需要使用花括号{}来包裹字典对象,而不是方括号[]。正确的代码应该是:
df = pd.DataFrame({"班级":["一年级","二年级","三年级","四年级"],
"人数":[30,40,35,45]})
相关问题
import openpyxl # 读取Excel文件 file = openpyxl.load_workbook('./智能合单POC数据(脱敏)_原始.xlsx') sheet = file.active # 将Excel数据转为DataFrame格式 data = [] for row in sheet.iter_rows(min_row=2, max_row=sheet.max_row, values_only=True): data.append(row) df = pd.DataFrame(data, columns=[col.value for col in sheet[1]]) df['要求送货时间'] = pd.to_datetime(df['要求送货时间'], format='%Y-%m-%d', errors='coerce' # 按日期分组,统计订单个数和车次 grouped = df.groupby('要求送货时间') result = pd.DataFrame({'订单个数': grouped.size(), '车次个数': grouped['车次'].nunique()}) print(result)报错为PS E:\数据建模> & C:/Users/asus/AppData/Local/Programs/Python/Python38/python.exe e:/数据建模/question4.py File "e:/数据建模/question4.py", line 369 grouped = df.groupby('要求送货时间') ^ SyntaxError: invalid syntax
这个错误是由于在 `pd.to_datetime` 函数调用的行末缺少了一个右括号。请在该行的末尾加上一个右括号,如下所示:
``` python
df['要求送货时间'] = pd.to_datetime(df['要求送货时间'], format='%Y-%m-%d', errors='coerce')
```
修改后,再运行代码看看是否还有其他错误。
pyspark执行df: pyspark.sql.DataFrame = [features: vector, label: string]时报错File "<stdin>", line 1 df: pyspark.sql.DataFrame = [features: vector, label: string] ^SyntaxError: invalid syntax
这个错误是因为你在定义DataFrame时使用了类型注解,但是Python 2不支持这种语法。在Python 2中,可以这样定义DataFrame:
```python
from pyspark.sql.types import StringType, StructField, StructType
from pyspark.ml.linalg import Vectors
schema = StructType([
StructField("features", Vectors.dense(1.0, 2.0, 3.0), True),
StructField("label", StringType(), True)
])
data = [(Vectors.dense(1.0, 2.0, 3.0), "a"), (Vectors.dense(4.0, 5.0, 6.0), "b")]
df = spark.createDataFrame(data, schema)
```
在Python 3中,你可以使用类型注解来定义DataFrame:
```python
from pyspark.sql.types import StringType, StructField, StructType
from pyspark.ml.linalg import Vectors
from typing import List, Tuple
schema = StructType([
StructField("features", Vector, True),
StructField("label", StringType(), True)
])
def create_dataframe(data: List[Tuple[List[float], str]]) -> DataFrame:
data = [(Vectors.dense(features), label) for (features, label) in data]
return spark.createDataFrame(data, schema)
data = [([1.0, 2.0, 3.0], "a"), ([4.0, 5.0, 6.0], "b")]
df = create_dataframe(data)
```
阅读全文