双三次插值python
时间: 2023-10-01 09:12:28 浏览: 86
双三次插值是一种常用的图像插值方法之一。在Python中,可以使用scikit-image库中的transform模块来进行双三次插值。
具体步骤如下:
1.首先,导入必要的库和模块:
```
from skimage import transform
from skimage import data
```
2.加载图像:
```
img = data.camera()
```
3.使用双三次插值进行图像缩放:
```
rescaled_img = transform.resize(img, (new_height, new_width), mode='reflect', anti_aliasing=True)
```
其中,`new_height`和`new_width`是缩放后图像的高度和宽度。`mode`参数用于处理边界像素的方式,这里使用了'reflect'模式,表示边界像素通过镜像方式填充。`anti_aliasing`参数用于控制是否进行抗锯齿处理,默认为True。
4.显示结果:
```
plt.imshow(rescaled_img, cmap='gray')
plt.axis('off')
plt.show()
```
这段代码将显示经过双三次插值后的图像。
双三次插值可以用于图像的缩放、旋转以及其他几何变换等操作,能够提供较好的图像质量和平滑效果。
相关问题
最近邻插值、双线性插值及双三次插值方法python
以下是最近邻插值、双线性插值以及双三次插值的Python实现:
最近邻插值:
```python
import numpy as np
from PIL import Image
def nearest_neighbor_interpolation(img, ratio):
'''
img: numpy array of shape (height, width, channel)
ratio: interpolation ratio
'''
height, width, channel = img.shape
new_height = int(height * ratio)
new_width = int(width * ratio)
new_img = np.zeros((new_height, new_width, channel), dtype=np.uint8)
for i in range(new_height):
for j in range(new_width):
x = int(i / ratio)
y = int(j / ratio)
new_img[i, j, :] = img[x, y, :]
return new_img
```
双线性插值:
```python
import numpy as np
from PIL import Image
def bilinear_interpolation(img, ratio):
'''
img: numpy array of shape (height, width, channel)
ratio: interpolation ratio
'''
height, width, channel = img.shape
new_height = int(height * ratio)
new_width = int(width * ratio)
new_img = np.zeros((new_height, new_width, channel), dtype=np.uint8)
for i in range(new_height):
for j in range(new_width):
x = i / ratio
y = j / ratio
x1 = int(x)
x2 = x1 + 1
y1 = int(y)
y2 = y1 + 1
if x2 >= height:
x2 = height - 1
if y2 >= width:
y2 = width - 1
f11 = img[x1, y1, :]
f12 = img[x1, y2, :]
f21 = img[x2, y1, :]
f22 = img[x2, y2, :]
dx = x - x1
dy = y - y1
new_img[i, j, :] = (1 - dx) * (1 - dy) * f11 + dx * (1 - dy) * f21 + (1 - dx) * dy * f12 + dx * dy * f22
return new_img
```
双三次插值:
```python
import numpy as np
from PIL import Image
def bicubic_interpolation(img, ratio):
'''
img: numpy array of shape (height, width, channel)
ratio: interpolation ratio
'''
def cubic(x, a):
if abs(x) <= 1:
return (a + 2) * abs(x) ** 3 - (a + 3) * abs(x) ** 2 + 1
elif 1 < abs(x) <= 2:
return a * abs(x) ** 3 - 5 * a * abs(x) ** 2 + 8 * a * abs(x) - 4 * a
else:
return 0
def get_index(x, length):
if x < 0:
return 0, 0
elif x >= length - 1:
return length - 1, length - 1
else:
return int(x), int(x) + 1
height, width, channel = img.shape
new_height = int(height * ratio)
new_width = int(width * ratio)
new_img = np.zeros((new_height, new_width, channel), dtype=np.uint8)
for i in range(new_height):
for j in range(new_width):
x = i / ratio
y = j / ratio
x1, x2 = get_index(x - 1, height)
x3, x4 = get_index(x, height)
x5, x6 = get_index(x + 1, height)
x7, x8 = get_index(x + 2, height)
y1, y2 = get_index(y - 1, width)
y3, y4 = get_index(y, width)
y5, y6 = get_index(y + 1, width)
y7, y8 = get_index(y + 2, width)
I1 = cubic((y - y1) / (y2 - y1), -0.5)
I2 = cubic((y - y3) / (y4 - y3), -0.5)
I3 = cubic((y - y5) / (y6 - y5), -0.5)
I4 = cubic((y - y7) / (y8 - y7), -0.5)
J1 = cubic((x - x1) / (x2 - x1), -0.5)
J2 = cubic((x - x3) / (x4 - x3), -0.5)
J3 = cubic((x - x5) / (x6 - x5), -0.5)
J4 = cubic((x - x7) / (x8 - x7), -0.5)
f11 = img[x1, y1, :]
f12 = img[x1, y2, :]
f13 = img[x1, y3, :]
f14 = img[x1, y4, :]
f15 = img[x1, y5, :]
f16 = img[x1, y6, :]
f17 = img[x1, y7, :]
f18 = img[x1, y8, :]
f21 = img[x2, y1, :]
f22 = img[x2, y2, :]
f23 = img[x2, y3, :]
f24 = img[x2, y4, :]
f25 = img[x2, y5, :]
f26 = img[x2, y6, :]
f27 = img[x2, y7, :]
f28 = img[x2, y8, :]
f31 = img[x3, y1, :]
f32 = img[x3, y2, :]
f33 = img[x3, y3, :]
f34 = img[x3, y4, :]
f35 = img[x3, y5, :]
f36 = img[x3, y6, :]
f37 = img[x3, y7, :]
f38 = img[x3, y8, :]
f41 = img[x4, y1, :]
f42 = img[x4, y2, :]
f43 = img[x4, y3, :]
f44 = img[x4, y4, :]
f45 = img[x4, y5, :]
f46 = img[x4, y6, :]
f47 = img[x4, y7, :]
f48 = img[x4, y8, :]
f51 = img[x5, y1, :]
f52 = img[x5, y2, :]
f53 = img[x5, y3, :]
f54 = img[x5, y4, :]
f55 = img[x5, y5, :]
f56 = img[x5, y6, :]
f57 = img[x5, y7, :]
f58 = img[x5, y8, :]
f61 = img[x6, y1, :]
f62 = img[x6, y2, :]
f63 = img[x6, y3, :]
f64 = img[x6, y4, :]
f65 = img[x6, y5, :]
f66 = img[x6, y6, :]
f67 = img[x6, y7, :]
f68 = img[x6, y8, :]
f71 = img[x7, y1, :]
f72 = img[x7, y2, :]
f73 = img[x7, y3, :]
f74 = img[x7, y4, :]
f75 = img[x7, y5, :]
f76 = img[x7, y6, :]
f77 = img[x7, y7, :]
f78 = img[x7, y8, :]
f81 = img[x8, y1, :]
f82 = img[x8, y2, :]
f83 = img[x8, y3, :]
f84 = img[x8, y4, :]
f85 = img[x8, y5, :]
f86 = img[x8, y6, :]
f87 = img[x8, y7, :]
f88 = img[x8, y8, :]
new_img[i, j, :] = (I1 * np.dot(np.array([J1, J2, J3, J4]), np.array([[f11, f12, f13, f14], [f21, f22, f23, f24], [f31, f32, f33, f34], [f41, f42, f43, f44]]))
+ I2 * np.dot(np.array([J1, J2, J3, J4]), np.array([[f21, f22, f23, f24], [f31, f32, f33, f34], [f41, f42, f43, f44], [f51, f52, f53, f54]]))
+ I3 * np.dot(np.array([J1, J2, J3, J4]), np.array([[f31, f32, f33, f34], [f41, f42, f43, f44], [f51, f52, f53, f54], [f61, f62, f63, f64]]))
+ I4 * np.dot(np.array([J1, J2, J3, J4]), np.array([[f41, f42, f43, f44], [f51, f52, f53, f54], [f61, f62, f63, f64], [f71, f72, f73, f74]])))
return new_img
```
以上是三种插值方法的Python实现,可以在实际应用中根据需要进行选择。
python 双三次插值
Python中的双三次插值可以使用scipy库中的`scipy.ndimage.zoom`函数来实现。该函数可以通过指定放大倍数来进行图像的插值操作。双三次插值是一种基于16个邻近像素点的插值方法,它通过计算目标像素点周围的16个邻近像素点的权重来确定目标像素点的值。不同于双线性插值,双三次插值可以保持更多的细节和平滑度,但计算代价也相应增加。
以下是一个示例代码,演示如何使用双三次插值来进行图像放大:
```python
import numpy as np
from scipy.ndimage import zoom
from PIL import Image
def Bicubic_interpolation(img, dstH, dstW):
srcH, srcW, _ = img.shape
retimg = zoom(img, (dstH/srcH, dstW/srcW, 1), order=3)
return retimg.astype(np.uint8)
im_path = 'wave.jpg'
image = np.array(Image.open(im_path))
image2 = Bicubic_interpolation(image, image.shape[0]*2, image.shape[1]*2)
image2 = Image.fromarray(image2).convert('RGB')
image2.save('out.jpg')
```
阅读全文