new_vehicles, current_frame_vehicle_count = counter.count_vehicles(frame, results) TypeError: cannot unpack non-iterable int object
时间: 2024-09-22 12:09:39 浏览: 50
这个错误是由于`counter.count_vehicles()`函数返回的结果不是一个可迭代的对象(如列表、元组或字典),而是单个整数(int)。`new_vehicles`和`current_frame_vehicle_count`是两个变量,它们需要从函数返回的结果中分别获取值,但这里返回的是单个值,所以无法通过`=`操作符进行解包赋值。
解决这个问题的方法是确认`count_vehicles`函数是否应该返回两个值,如果仅返回一个车辆计数,你可以直接将结果赋给一个变量,例如:
```python
new_vehicle_count = counter.count_vehicles(frame, results)
```
然后,如果你确实需要分开计算新车辆数量和当前帧车辆总数,你需要修改`count_vehicles`函数使其返回一个包含这两个值的元组或其他可迭代的数据结构,比如:
```python
def count_vehicles(frame, results):
# ... 计算逻辑 ...
return new_vehicle_count, total_vehicle_count
```
之后,你就可以正确地解包返回值了:
```python
new_vehicles, current_frame_vehicle_count = counter.count_vehicles(frame, results)
```
相关问题
> new_data2 <- transform(new_data2, Percent.Non.Electric.Vehicl = (Non.Electric.Vehicle.Total/Total.Vehicles)) > ncol(new_data2) [1] 9 > new_data2 <- cbind(new_data2[1:9], Percent.Non.Electric.Vehicl = Percent.Non.Electric.Vehicl, new_data2[10:ncol(new_data2)]) Error: object 'Percent.Non.Electric.Vehicl' not found
这个错误提示是因为在 `cbind()` 函数中的 `Percent.Non.Electric.Vehicl` 变量未被定义。在 `transform()` 函数中定义的变量默认只存在于该函数中,并不会被保留下来。
你需要把 `transform()` 函数中创建的新变量与原始数据合并,然后再使用 `cbind()` 函数将它们组合起来。可以使用 `merge()` 函数或者 `dplyr` 包中的 `mutate()` 函数来实现。
示例代码:
```R
library(dplyr)
new_data2 <- merge(new_data2,
new_data2 %>%
transmute(Percent.Non.Electric.Vehicl = Non.Electric.Vehicle.Total/Total.Vehicles),
by = c("Region", "State"))
# 或者使用 mutate() 函数
new_data2 <- new_data2 %>%
mutate(Percent.Non.Electric.Vehicl = Non.Electric.Vehicle.Total/Total.Vehicles)
# 最后使用 cbind() 函数组合
new_data2 <- cbind(new_data2[, 1:9],
new_data2[, ncol(new_data2)],
new_data2[, 10:(ncol(new_data2)-1)])
```
import cv2import numpy as npimport timefrom ultralytics import YOLO# 加载YOLO模型def load_yolo(model_path): yolo = YOLO(model_path) return yolo# 车辆检测def detect_vehicles(yolo, frame): classes, scores, boxes = yolo(frame) vehicles = [] for i in range(len(classes)): if classes[i] == 'car' or classes[i] == 'truck': vehicles.append(boxes[i]) return vehicles# 时速估计def estimate_speed(prev_frame, curr_frame, vehicles): speed = [] for vehicle in vehicles: x1, y1, x2, y2 = vehicle prev_vehicle_roi = prev_frame[y1:y2, x1:x2] curr_vehicle_roi = curr_frame[y1:y2, x1:x2] prev_gray = cv2.cvtColor(prev_vehicle_roi, cv2.COLOR_BGR2GRAY) curr_gray = cv2.cvtColor(curr_vehicle_roi, cv2.COLOR_BGR2GRAY) flow = cv2.calcOpticalFlowFarneback(prev_gray, curr_gray, None, 0.5, 3, 15, 3, 5, 1.2, 0) flow_mean = np.mean(flow) speed.append(flow_mean * 30) # 假设每帧间隔为1/30秒 return speed# 绘制检测结果def draw_results(frame, vehicles, speeds): for i in range(len(vehicles)): x1, y1, x2, y2 = vehicles[i] cv2.rectangle(frame, (x1, y1), (x2, y2), (0, 255, 0), 2) cv2.putText(frame, 'Vehicle ' + str(i+1) + ': ' + str(speeds[i]) + ' km/h', (x1, y1-10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 255, 0), 2)# 主函数def main(): # 加载YOLO模型 yolo = load_yolo("yolov8n.pt") # 打开视频或摄像头 cap = cv2.VideoCapture(0) # 如果要打开视频,请将0改为视频文件的路径 # 初始化 prev_frame = None while True: # 读取当前帧 ret, frame = cap.read() if not ret: break # 车辆检测 vehicles = detect_vehicles(yolo, frame) # 时速估计 if prev_frame is not None: speeds = estimate_speed(prev_frame, frame, vehicles) else: speeds = [0] * len(vehicles) # 绘制检测结果 draw_results(frame, vehicles, speeds) # 显示检测结果 cv2.imshow('Vehicle Detection', frame) # 保存检测结果 cv2.imwrite('result.jpg', frame) # 按下q键退出 if cv2.waitKey(1) == ord('q'): break # 更新上一帧 prev_frame = frame.copy() # 释放资源 cap.release() cv2.destroyAllWindows()if __name__ == '__main__': main()整理好代码
以下是整理好的代码,实现了车辆检测和时速估计,并且可以在视频或摄像头中实时显示检测结果:
```python
import cv2
import numpy as np
import time
from ultralytics import YOLO
# 加载YOLO模型
def load_yolo(model_path):
yolo = YOLO(model_path)
return yolo
# 车辆检测
def detect_vehicles(yolo, frame):
classes, scores, boxes = yolo(frame)
vehicles = []
for i in range(len(classes)):
if classes[i] == 'car' or classes[i] == 'truck':
vehicles.append(boxes[i])
return vehicles
# 时速估计
def estimate_speed(prev_frame, curr_frame, vehicles):
speed = []
for vehicle in vehicles:
x1, y1, x2, y2 = vehicle
prev_vehicle_roi = prev_frame[y1:y2, x1:x2]
curr_vehicle_roi = curr_frame[y1:y2, x1:x2]
prev_gray = cv2.cvtColor(prev_vehicle_roi, cv2.COLOR_BGR2GRAY)
curr_gray = cv2.cvtColor(curr_vehicle_roi, cv2.COLOR_BGR2GRAY)
flow = cv2.calcOpticalFlowFarneback(prev_gray, curr_gray, None, 0.5, 3, 15, 3, 5, 1.2, 0)
flow_mean = np.mean(flow)
speed.append(flow_mean * 30) # 假设每帧间隔为1/30秒
return speed
# 绘制检测结果
def draw_results(frame, vehicles, speeds):
for i in range(len(vehicles)):
x1, y1, x2, y2 = vehicles[i]
cv2.rectangle(frame, (x1, y1), (x2, y2), (0, 255, 0), 2)
cv2.putText(frame, 'Vehicle ' + str(i+1) + ': ' + str(speeds[i]) + ' km/h', (x1, y1-10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 255, 0), 2)
# 主函数
def main():
# 加载YOLO模型
yolo = load_yolo("yolov8n.pt")
# 打开视频或摄像头
cap = cv2.VideoCapture(0) # 如果要打开视频,请将0改为视频文件的路径
# 初始化
prev_frame = None
while True:
# 读取当前帧
ret, frame = cap.read()
if not ret:
break
# 车辆检测
vehicles = detect_vehicles(yolo, frame)
# 时速估计
if prev_frame is not None:
speeds = estimate_speed(prev_frame, frame, vehicles)
else:
speeds = [0] * len(vehicles)
# 绘制检测结果
draw_results(frame, vehicles, speeds)
# 显示检测结果
cv2.imshow('Vehicle Detection', frame)
# 按下q键退出
if cv2.waitKey(1) == ord('q'):
break
# 更新上一帧
prev_frame = frame.copy()
# 释放资源
cap.release()
cv2.destroyAllWindows()
if __name__ == '__main__':
main()
```
阅读全文